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Outline Today’s Lecture

e linearization argument
e review linear dynamics

e stability theorem for Non-Linear dynamics
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Linearization argument

Euler Equation

Fy(z,9(x)) +BF: (9(x),9(g(x))) =0

steady state
F,(x*,2") 4+ BF, (*,2%) =0

g’ (z*) gives dynamics of x; close to a steady state

first order Taylor approximation
Tep1 — 2" 2 g (27) (2 — 27

local stability if |¢' (*)] < 1
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computing g’ (x)

0 = Fy(z*,2%)+F, (5 2%) g (2%) +
* * * * * * 2
+BF e (2%, 2%) ' (%) + BFoy (2%, 27) [¢' (27)]
e quadratic in ¢’ (z*) = two candidates for ¢’ (z*)

e reciprocal pairs: A is a solution so is 1/A\f3
0= Fyp (x,2%) + [Fyy (2%, 2%) + BFue (x%, 2| A+ BFyy, (2%, %) \°
dividing by A\*8 and since F,, (z*,2*) = F,, (z*,2*)

-2
0= BFye (@"a") | 35| +lFw (@0 + 8Frs (0*,0)] | 35 |+

e Thus If‘)\l‘ <1l— |)\2 > 1
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Using ¢’ (z=*)

xo close to the steady state x*smaller root has absolute value less than
one, consider the following sequence of {11} :

v =2 +¢g (%) (xg —2*) fort >0

sequence satisfies the Euler Equations

since |¢' (z*)| < 1, it converges to the steady state z*, and hence it
satisfies the transversality condition

= if ' concave we have found a solution

If both |A1| > 1 and |A3| > 1, then we do not know which one describes
g’ (z*) if any, but we do know that that steady state is not locally stable
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Neoclassical growth model

Fx,y) =U(f(z),y) so
Fp(r,y) = U (f(x)—y) f(z)
Fy(zy) = U (f(z)—y)
Fow(z,y) = U'(f(z)—y) f (@) +U (f(2)—y) f"' (x)
Fyy(z,y) = U (f(z)—y
Fyy (z, )

0 = Fpy+[Fyy+BFu]g + (9/)2 Fuy
— _U//f/ + [U” + BU//f/Z 4 BU/]H/} g/ B (91)2 BU”]H

S [1/5— [1+1/6+ <ff—/,//U7l,/)] g + (g’)2]
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quadratic function

18- U] s
QN =1/p8 [1+1/5+(f,/U,)]A+A.
Notice that
Q(0) = %>o

oW = - (%/%) <o

N . _ mur
Q'(N) = 0:1<A\ _[1+1/5+<f,/U,)]/2
f// U//

Q(1/8) = —(?/7)%<0
Q(A) > 0 for A large
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So,

0 = Q(\1)=Q(\)

0 < M<I<1/B< )

1/

e smallest root \; = ¢’ (k) changes with ]}—,/

controls speed of convergence

U//
U/
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Stability of linear dynamic systems of higher
dimensions

Yt+1 — Ayt

assume A is non-singular — y = 0

e diagonalizing the matrix A we obtain:

A=P AP

e A is a diagonal matrix with its eigenvalues \; on its diagonal

e matrix P contains the eigenvectors of A

continued...
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jdas

continued...

jdas

jdas

jdas


e write linear system as

Pyt+1:APytfortZO

e or defining z as z; = Py;

Zt4+1 = A,Zt for ¢ Z 0
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Stability Theorem

Let \; be such that fori =1,2,...,m we have |\;| < 1 and fori = m+1,m-+
2,...,m we have |\;| > 1. Consider the sequence

Yt+1 = Ayt for ¢ 2 0
for some initial condition y3. Then

lim y; = 0,

t—00

if an only if the initial condition g satisfies:
—1A
Yo =P "%

where Zy is a vector with its n — m last coordinates equal to zero, i.e.

Zio=0fore=m+1m+2,....m
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Non-Linear version

take z411 = h(x;) and let A be the Jacobian (n x n) of h. Assume I — A is
nonsingular. Assume A has eigenvalues \; be such that for i = 1,2, ..., m we
have |\;| < 1 and forli = m + 1,m + 2,...,n we have |\;| > 1. Then there
is a neighbourhood of x, call it U, and a continuously differentiable function

¢ : U — R"™ "™ such that z; is stable IFF z, € U and ¢ (xg) = 0. The
jacobian of the function ¢ has rank n — m.

e idea: can solve ¢ for n — m last coordinates as functions of first m
coordinates
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Second order differential equation

Tiro = A1Ti1 + Aoy

with z; € R™ and with initial conditions x5 and x_;.

e define
o[
Lt—1
e then
Xiyo =J X,
where the matrix 2n x 2n matrix J has four n x n blocks
A Ao
=17
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Linearized Euler equations

e |dea: apply second order linear stability theory to linearized Euler

Fp (z,y) + BF: (y,h(y,z)) =0

e stacked system

Xt:

Lt+1
Lt

then H (Xt) = Xt_|_1 IS

mow =[N

e then compute the jacobian of H and use our non-linear theorem

e remark: roots will come in reciprocal pairs
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