
Recursive Methods 

Introduction to Dynamic Optimization Nr. 1




Outline Today’s Lecture 

• linearization argument 

• review linear dynamics 

• stability theorem for Non-Linear dynamics 
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Linearization argument 

• Euler Equation 

Fy (x, g (x)) + βFx (g (x) , g  (g (x))) = 0 

• steady state 
Fy (x ∗ , x  ∗ ) +  βFx (x ∗ , x  ∗ ) =  0 

• g0 (x ∗) gives dynamics of xt close to a steady state 

• first order Taylor approximation 

xt+1 − x ∗ ∼= g 0 (x ∗ ) (xt − x ∗ ) 

• local stability if |g0 (x ∗)| < 1 
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computing g0 (x) 

0 =  Fyx (x ∗ , x  ∗ ) +  Fyy (x ∗ , x  ∗ ) g 0 (x ∗ ) +  

+βFxx (x ∗ , x  ∗ ) g 0 (x ∗ ) +  βFxy (x ∗ , x  ∗ ) [g 0 (x ∗ )]2 

• quadratic in g0 (x ∗) ⇒ two candidates for g0 (x ∗) 

• reciprocal pairs: λ is a solution so is 1/λβ 

0 =  Fyx (x ∗ , x  ∗ ) + [Fyy (x ∗ , x  ∗ ) +  βFxx (x ∗ , x  ∗ )] λ + βFxy (x ∗ , x  ∗ ) λ2 

dividing by λ2β and since Fyx (x ∗ , x  ∗) =  Fxy (x ∗ , x  ∗) 

0 =  βFyx (x ∗ , x  ∗ ) 
· 
1 
λβ 

¸2 

+[Fyy (x ∗ , x  ∗ ) +  βFxx (x ∗ , x  ∗ )] 
· 
1 
βλ 

¸
+Fxy (x ∗ , x  

• Thus if |λ1| < 1 → |λ2| > 1 

∗


Introduction to Dynamic Optimization Nr. 4




Using g0 (x∗)

• x0 close to the steady state x
∗smaller root has absolute value less than

one, consider the following sequence of {xt+1} :

xt+1 = x∗ + g0 (x∗) (xt − x∗) for t ≥ 0

• sequence satisfies the Euler Equations
• since |g0 (x∗)| < 1, it converges to the steady state x∗, and hence it
satisfies the transversality condition

• ⇒ if F concave we have found a solution

• If both |λ1| > 1 and |λ2| > 1, then we do not know which one describes
g0 (x∗) if any, but we do know that that steady state is not locally stable
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Neoclassical growth model

F (x, y) = U (f (x) , y) so

Fx (x, y) = U 0 (f (x)− y) f 0 (x)
Fy (x, y) = −U 0 (f (x)− y)

Fxx (x, y) = U 00 (f (x)− y) f 0 (x)2 + U 0 (f (x)− y) f 00 (x)
Fyy (x, y) = U 00 (f (x)− y)

Fxy (x, y) = −U 00 (f (x)− y) f 0 (x)

steady state k∗ solves 1 = βf 0 (k∗)

0 = Fxy + [Fyy + βFxx] g
0 + (g0)2 Fxy

= −U 00f 0 + £U 00 + βU 00f 02 + βU 0f 00
¤
g0 − (g0)2 βU 00f 0

= −U 00
·
1/β −

·
1 + 1/β +

µ
f 00

f 0
/
U 00

U 0

¶¸
g0 + (g0)2

¸
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quadratic function

Q (λ) = 1/β −
·
1 + 1/β +

µ
f 00

f 0
/
U 00

U 0

¶¸
λ+ λ2.

Notice that

Q (0) =
1

β
> 0

Q (1) = −
µ
f 00

f 0
/
U 00

U 0

¶
< 0

Q0 (λ∗) = 0 : 1 < λ∗ =
·
1 + 1/β +

µ
f 00

f 0
/
U 00

U 0

¶¸
/2

Q (1/β) = −
µ
f 00

f 0
/
U 00

U 0

¶
1

β
< 0

Q (λ) > 0 for λ large
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So,

0 = Q (λ1) = Q (λ2)

0 < λ1 < 1 < 1/β < λ2

• smallest root λ1 = g0 (k∗) changes with f 00

f 0 /
U 00
U 0

controls speed of convergence
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Stability of linear dynamic systems of higher

dimensions

yt+1 = Ayt

assume A is non-singular → ȳ = 0

• diagonalizing the matrix A we obtain:

A = P−1ΛP

• Λ is a diagonal matrix with its eigenvalues λi on its diagonal
• matrix P contains the eigenvectors of A

Introduction to Dynamic O ptimization Nr. 9

jdas

continued...

jdas

jdas

jdas



• write linear system as

Pyt+1 = Λ Pyt for t ≥ 0

• or defining z as zt ≡ Pyt

zt+1 = Λzt for t ≥ 0
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Stability Theorem

Let λi be such that for i = 1, 2, ...,m we have |λi| < 1 and for i = m+1,m+
2, ..., n we have |λi| ≥ 1. Consider the sequence

yt+1 = Ayt for t ≥ 0

for some initial condition y0. Then

lim
t→∞ yt = 0,

if an only if the initial condition y0 satisfies:

y0 = P−1ẑ0

where ẑ0 is a vector with its n−m last coordinates equal to zero, i.e.

ẑi0 = 0 for i = m+ 1,m+ 2, ...,m
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Non-Linear version

take xt+1 = h (xt) and let A be the Jacobian (n× n) of h. Assume I −A is
nonsingular. Assume A has eigenvalues λi be such that for i = 1, 2, ...,m we

have |λi| < 1 and fo r i = m + 1,m + 2, ..., n we have |λi| ≥ 1. Then there
is a n eighbourhood of x̄, call it U, and a continuously diff erentiable function
φ : U → Rn−m such that xt is stable IFF xo ∈ U and φ (x0) = 0. The
jacobian of the function φ has rank n−m.

• idea: can solve φ for n − m last coordinates as functions of first m
coordinates
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Second order differential equation

xt+2 = A1xt+1 +A2xt

with xt ∈ Rn and with initial conditions x0 and x−1.

• define
Xt =

·
xt
xt−1

¸
• then

Xt+2 = J Xt

where the matrix 2n× 2n matrix J has four n× n blocks

J =

·
A1 A2
I 0

¸
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Linearized Euler equations

• Idea: apply second order linear stability theory to linearized Euler
•

Fx (x, y) + βFx (y, h (y, x)) = 0

• stacked system
Xt =

·
xt+1
xt

¸
then H (Xt) = Xt+1 is

H (Xt) =

·
h (xt+1, xt)

xt+1

¸
• then compute the jacobian of H and use our non-linear theorem

• remark: roots will come in reciprocal pairs
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