

Outline Today's Lecture

- Dynamic Programming under Uncertainty notation of sequence problem
- leave study of dynamics for next week
- Dynamic Recursive Games: Abreu-Pearce-Stachetti
- Application: today's Macro seminar

Dynamic Programming with Uncertainty

- general model of uncertainty: need Measure Theory
- for simplicity: finite state S
- Markov process for s (recursive uncertainty)

$$\Pr\left(s_{t+1}|s^{t}\right) = p\left(s_{t+1}|s_{t}\right)$$

$$v^*\left(x_0, s_0\right) \equiv$$

$$\sup_{\{x_{t+1}(\cdot)\}_{t=0}^{\infty}} \left\{ \sum_{t} \sum_{s^{t}} \beta^{t} F\left(x_{t}\left(s^{t-1}\right), x_{t+1}\left(s^{t}\right)\right) \Pr\left(s^{t} | s_{0}\right) \right\}$$

$$x_{t+1}\left(s^{t}\right) \in \Gamma\left(x_{t}\left(s^{t-1}\right)\right)$$

$$x_{0} \text{ given}$$

Dynamic Programming

Functional Equation (Bellman Equation)

$$v(x,s) = \sup \left\{ F(x,y) + \beta \sum_{s'} v(y,s') p(s'|s) \right\}$$

or simply (or more generally):

$$v(x, s) = \sup \{F(x, y) + \beta E[v(y, s') | s]\}$$

where the $E\left[\cdot|s\right]$ is the conditional expectation operator over s' given s

- basically same: Ppple of Optimality, Contraction Mapping (bounded case), Monotonicity [actually: differentiability sometimes easier!]
- notational gain is huge!

Policy Rules Rule

- more intuitive too!
- fundamental change in the notion of a solution

optimal policy $g\left(x,s\right)$

VS.

optimal sequence of contingent plan $\{x_{t+1}(s^t)\}_{t=0}^{\infty}$

- Question: how can we use g to understand the dynamics of the solution? (important for many models)
- Answer: next week...

Abreu Pearce and Stachetti (APS)

- Dynamic Programming for Dynamic Games
- idea: subgame perfect equilibria of repeated games have recursive structure
 - → players care about future strategies only through their associated utility values
- APS study general N person game with non-observable actions
- we follow Ljungqvist-Sargent:
 continuum of identical agents vs. benevolent government
- time consistency problems (credibility through reputation)
- ullet agent i has preferences $u\left(x_i,x,y
 ight)$ where x is average across x_i 's

One Period

• competitive equilibria:

$$C = \left\{ (x, y) : x \in \arg \max_{x_i} u(x_i, x, y) \right\}$$

assume x = h(y) for all $(x, y) \in C$

- 1. Dictatorial allocation: $\max_{x,y} u(x,x,y)$ (wishful thinking!)
- 2. Ramsey commitment allocation: $\max_{(x,y)\in C}u\left(x,x,y\right)$ (wishful think ing?)
 - 3. Nash equilibrium (x^N, y^N) : (might be **bad outcome**)

$$x^{N} \in \arg\max_{x} u\left(x, x^{N}, y^{N}\right) \Leftrightarrow \left(x^{N}, y^{N}\right) \in C$$

$$y^{N} \in \arg\max_{y} \binom{N}{u} (x^{N}, x^{N}, y) \Leftrightarrow y^{N} \binom{N}{u} = H\left(x^{N}\right)$$

Kydland-Prescott / Barro-Gordon

$$v(u,\pi) = -u^2 - \pi^2$$

$$u = \bar{u} - (\pi - \pi^e)$$

$$u(\pi_{i}^{e}, \pi^{e}, \pi) = v(\bar{u} - (\pi - \pi^{e}), \pi) - \lambda (\pi_{i}^{e} - \pi)^{2}$$
$$= -(\bar{u} - (\pi - \pi^{e}))^{2} - \pi^{2} - \lambda (\pi_{i}^{e} - \pi)^{2}$$

then $\pi_i^e = \pi^e = \pi = h(\pi)$ take $\lambda \to 0$ then

$$-(\bar{u}-\pi+\pi^e)^2-\pi^2$$

• First best Ramsey:

$$\max_{\pi} \left\{ -(\bar{u} - \pi + h(\pi))^2 - \pi^2 \right\} = \max_{\pi} \left\{ -(\bar{u})^2 - \pi^2 \right\}$$

$$\to \pi^* = 0$$

Kydland-Prescott / Barro-Gordon

Nash outcome. Gov't optimal reaction:

$$\max_{\pi} \left\{ -\left(\bar{u} - \pi + \pi^e\right)^2 - \pi^2 \right\}$$

$$\pi = \frac{\bar{u} + \pi^e}{2}$$

this is $\pi = H(\pi^e)$

- Nash equilibria is then $\pi=H\left(h\left(\pi\right)\right)=H\left(\pi\right)=\frac{\bar{u}+\pi}{2}$ which implies $\pi^{eN}=\pi^{N}=\bar{u}$
 - ightarrow unemployment stays at \bar{u} but positive inflation \Rightarrow worse off
- Andy Atkeson: adds shock θ that is private info of gov't (macro seminar)

Infinitely Repeated Economy

• Payoff for government:

$$V_g = \frac{1 - \delta}{\delta} \sum_{t=1}^{\infty} \delta^t r(x_t, y_t)$$

where r(x,y) = u(x,x,y)

• strategies σ ...

$$\sigma_g = \left\{ \sigma_t^g \left(x^{t-1}, y^{t-1} \right) \right\}_{t=0}^{\infty}$$

$$\sigma_h = \left\{ \sigma_t^h \left(x^{t-1}, y^{t-1} \right) \right\}_{t=0}^{\infty}$$

- induce $\{x_t, y_t\}$ from which we can write $V_g\left(\sigma\right)$.
- ullet continuation stategies: after history (x^t,y^t) we write $\sigma|_{(x^t,y^t)}$

Subgame Perfect Equilibrium

- A strategy profile $\sigma=(\sigma^h,\sigma^g)$ is a subgame perfect equilibrium of the infinitely repeated economy if for each $t\geq 1$ and each history $(x^{t-1},y^{t-1})\in X^{t-1}\times Y^{t-1}$,
 - 1. The outcome $x_t = \sigma_t^h(x^{t-1}, y^{t-1})$ is a competitive equilibrium given that $y_t = \sigma_t^g(x^{t-1}, y^{t-1})$, i.e. $(x_t, y_t) \in C$
 - 2. For each $\hat{y} \in Y$

$$(1-\delta)r(x_t, y_t) + \delta V_g(\sigma|_{(x^t, y^t)}) \ge (1-\delta)r(x_t, \hat{y}) + \delta V_g(\sigma|_{(x^t; y^t - 1, \hat{y})})$$

(one shot deviations are not optimal)

Lemma

Take σ and let x and y be the associated first period outcome. Then σ is sub-game perfect if and only if:

- 1. for all $(\hat{x}, \hat{y}) \in X \times Y$ $\sigma|_{\hat{x}, \hat{y}}$ is a sub-game perfect equilibrium
- 2. $(x,y) \in C$
- 3. $\hat{y} \in Y$

$$(1 - \delta)r(x_t, y_t) + \delta V_g(\sigma|_{(x,y)}) \ge (1 - \delta)r(x_t, \hat{y}) + \delta V_g(\sigma|_{(\hat{x},\hat{y})})$$

- note the stellar role of $V_g(\sigma|_{(x,y)})$ and $V_g(\sigma|_{(\hat{x},\hat{y})})$, its all that matters for checking whether it is best to do x or deviate...
- idea! think about values as fundamental

Values of all SPE

• Set V of values

 $V = V_g(\sigma) | \sigma$ is a subgame perfect equilibrium

• Let $W \subset R$. A 4-tuple (x,y,ω_1,ω_2) is said to be admissible with respect to W if $(x,y) \in C$, $\omega_1,\omega_2 \in W \times W$ and

$$(1-\delta)r(x,y)+\delta\omega_1\geq (1-\delta)r(x,\hat{y})+\delta\omega_2$$
, $\forall\hat{y}\in Y$

B(W) operator

Definition: For each set $W\subset R$, let B(W) be the set of possible values $\omega=(1-\delta)r(x,y)+\delta\omega_1$ associated with some admissible tuples (x,y,ω_1,ω_2) wrt W:

$$B(W) \equiv \left\{ w: \begin{array}{l} \exists \, (x,y) \in C \text{ and } \omega_1, \omega_2 \in W \text{ s.t.} \\ (1-\delta)r(x,y) + \delta\omega_1 \geq (1-\delta)r(x,\hat{y}) + \delta\omega_2, \ \forall \hat{y} \in Y \end{array} \right\}$$

- note that V is a fixed point B(V) = V
- ullet we will see that V is the biggest fixed point

- Monotonicity of B. If $W \subset W' \subset R$ then $B(W) \subset B(W')$
- Theorem (self-generation): If $W \subset R$ is bounded and $W \subset B(W)$ (self-generating) then $B(W) \subset V$

Proof

- Step 1 : for any $W \in B(W)$ we can choose and x,y,ω_1 , and ω_2 $(1-\delta)r(x,y)+\delta\omega_1 \geq (1-\delta)r(x,\hat{y})+\delta\omega_2, \ \forall \hat{y} \in Y$
- Step 2: for $\omega_1,\omega_2\in W$ thus do the same thing for them as in step 1 continue in this way...

Three facts and an Algorithm

- \bullet $V \subset B(V)$
- If $W \subset B(W)$, then $B(W) \subset V$ (by self-generation)
- B is monotone and maps compact sets into compact sets
- **Algorithm:** start with W_0 such that $V \subset B(W_0) \subset W_0$ then define $W_n = B^n(W_0)$

$$W_n \to V$$

Proof: since W_n are decreasing (and compact) they must converge, the limit must be a fixed point, but V is biggest fixed point

Finding V

In this simple case here we can do more...

• lowest v is self-enforcing highest v is self-rewarding

$$v_{low} = \min_{\substack{(x,y) \in C \\ v \in V}} \left\{ (1 - \delta) \, r \, (x,y) + \delta v \right\}$$

$$(1 - \delta) r(x,y) + \delta v \ge (1 - \delta) r(x,\hat{y}) + \delta v_{low} \text{ all } \hat{y} \in Y$$

$$\Rightarrow v_{low} = (1 - \delta)r(h(y), y) + \delta v \ge (1 - \delta)r(h(y), H(h(y))) + \delta v_{low}$$

ullet if binds and $v>v_{low}$ then minimize RHS of inequality

$$v_{low} = \min_{y} r(h(y), H(h(y)))$$

Best Value

 for Best, use Worst to punish and Best as reward solve:

$$\max_{\substack{(x,y)\in C\\v\in V}}=\left\{ (1-\delta)\,r\left(x,y\right)+\delta v_{high}\right\}$$

$$(1-\delta)r(x,y)+\delta v_{high}\geq (1-\delta)r(x,\hat{y})+\delta v_{low} \text{ all } \hat{y}\in Y$$
 then clearly $v_{high}=r\left(x,y\right)$

SO

$$\max r\left(h\left(y\right),y\right)$$
 subject to $r\left(h\left(y\right),y\right)\geq(1-\delta)r(h\left(y\right),H\left(h\left(y\right)))+\delta v_{low}$

- if constraint not binding → Ramsey (first best)
- ullet otherwise value is constrained by v_{low}