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Common auctions & 
Revenue equivalence & 
Optimal mechanisms 

1 Notable features of auctions 

• Ancient “market” mechanisms. Widespread in 

use. A lot of varieties. 

• Simple and transparent games (mechanisms). Uni-

versal rules (does not depend on the object for 

sale), anonymous (all bidders are treated equally). 

• Operate well in the incomplete information envi-

ronments. Seller (and sometimes bidders as well) 

does not know how the others value the object. 

• Optimality and efficiency in broad range of set-

tings. 

• Probably the most active area of research in eco-

nomics. 



2 Notation  (Symmetric  IPV)  

Independent private values setting with symmetric risk-
neutral buyers, no budget constraints. 

• Single indivisible object for sale. 

• N potential buyers, indexed by i. N commonly 
known to all bidders. 

• Xi – valuation of buyer i – maximum willing-
ness to pay for the object. 

• Xi ∼ F [0, ω] with continuous  f = F 0 and full 
support. 

• Xi is private value (signal); all Xi are iid, which  
is common knowledge. 

3 Common auctions 

SEALED-BID Auctions. 

• First price sealed-bid auction: 

Each bidder submits a bid bi ∈ R (sealed, or un-
observed by the others). The winner is the buyer 
with the highest bid, the winner pays her bid. 

• Second price sealed-bid auction: 

As above, the winner pays second highest bid – 
highest of the bids of the others. 

• Kth price auction: 

The winner pays the Kth highest price. 

• All-pay auction: 

All bidders pay their bids. 



OPEN (DYNAMIC) Auctions. 

• Dutch auction: 

The price of the object starts at some high level, 

when no bidder is willing to pay for it. It is de-

creased until some bidder announces his willing-

ness to buy. He obtains the object at this price. 

Note: Dutch and First-price auctions are equiva-
lent in strong sense. 

• English auction: 

The price of the object starts at zero and in-

creases. Bidders start active – willing to buy the 

object at a price of zero. At a given price, each 

bidder is either willing to buy the object at that 

price (active) or not (inactive). While the price is 

increasing, bidders reduce(*) their demands. The 

auction stops when only one bidder remains ac-

tive. She is the winner, pays the price at which 

the last of the others stopped bidding. 

Note: English auction is in a weak sense equiva-

lent to the second-price auction. 



4 First-price auction 

Payoffs 

Πi = 

( 
xi − bi, if bi > maxj 6=i bj, 

0, otherwise. 

Proposition: Symmetric equilibrium strategies in a 
first-price auction are given by 

βI(x) =  E [Y1|Y1 < x] , 

where Y1 = maxj 6=i{Xj}. 

Proof: Easy to check that it is eq.strat., let us derive 
it. 

Suppose every other bidder except i follows strictly 
increasing (and differentiable) strategy β(x). 

Equilibrium trade-off: Gain from winning versus prob-
ability of winning. 

Expected payoff from bidding b when receiving xi is 

GY1(β
−1(b)) × (xi − b). 

FOC: 

g(β−1(b)) 
β0(β−1(b))

(x − b) − G(β−1(b)) = 0. 

In symmetric equilibrium, b(x) =  β(x), so FOC ⇒ 

G(x)β0(x) +  g(x)β(x) =  xg(x), 
d 

dx 
(G(x)β(x)) = xg(x), 

β(x) =  
1 

G(x) 

Z x 

0 
yg(y)dy, 

= E [Y1|Y1 < x] . 

In the first price auction expected payment is 

m I(x) = Pr[Win]  × b(x) 

= G(x) × E [Y1|Y1 < x] . 



5 Examples:  

1. Suppose values are uniformly distributed on [0, 1]. 

F (x) =  x, then G(x) =  xN−1 and 

βI(x) =  
N − 1 

N 
x. 

2. Suppose values are exponentially distributed on 

[0, ∞). 
F (x) = 1  − e−λx, for  some  λ >  0 and  N = 2,  

then 

βI(x) =  x − 
Z x 

0 

F (y) 

F (x)
dy 

= 
1 

λ 
− 

xe−λx 

1 − e−λx
. 

Note that if, say for λ = 2,  x is very large the bid 

would not exceed 50 cents. 

6 Second-price auction 

Proposition: In a second-price sealed-bid auction, it 

is  a weakly dominant strategy to bid  

βII(x) =  x. 

In the second price auction expected payment of the 

winner with value x is the expected value of the second 
highest bid given x, which is the expectation of the 

second-highest value given x. 

Thus, expected payment in the second-price auction 

is 

m I(x) = Pr[Win]  × E [Y1|Y1 < x] 

= G(x) × E [Y1|Y1 < x] . 



7 Notation  (IPV)  

Independent private values setting with risk-neutral 
buyers, no budget constraints. Not necessarily sym-
metric. 

• Single indivisible object for sale. 

• N potential buyers, indexed by i. N commonly 
known to all bidders. 

• Xi – private valuation of buyer i – maximum 
willingness to pay for the object. 

• Xi ∼ Fi[0, ωi] with continuous  fi = F 0 i and full 
support, independent across buyers. 

• X = ×N 
i=1Xi, X−i = ×j 6=iXj, f(x) is joint den-

sity. 

8 Mechanisms 

A selling mechanism (B, π, µ) :  

• Bi – a set of messages (or bids) for player i. 

• π : B → ∆ – allocation rule; here ∆ is the set 

of probability distributions over N . 

• µ : B→ Rn – payment  rule.  

Example: First- and second-price auctions. 

Every mechanism defines an incomplete information 

game: 

• βi : [0, ωi] → Bi is a strategy; 

• Equilibrium is defined accordingly. 



9 Revelation principle 

Direct mechanism (Q, M): 

• Bi = Xi; 
• Q : X → ∆, where  Qi(x) is the probability that 
i gets the object. 

• M : X → Rn, where  Mi(x) is the expected pay-
ment by i. 

Proposition: (Revelation principle) Given a mecha-
nism and an equilibrium for that mechanism, there 
exist a direct mechanism in which: 

1. it is an equilibrium for each buyer to report truth-
fully, and 

2. the outcomes are the same. 

Proof: Define Q(x) =  π(β(x)) and M(x) =  µ(β(x)). 
Verify. 

10 Incentive compatibility 

Define qi(zi) and  mi(zi) to be a probability that  i gets 
the object and her expected payment from reporting 
zi while every other bidder reports truthfully: 

qi(zi) =  
Z 

X−i 
Qi(zi, x−i)f−i(x−i)dx−i, 

mi(zi) =  
Z 

X−i 
Mi(zi, x−i)f−i(x−i)dx−i. 

Expected payoff of the buyer i with value xi and re-
porting zi is 

qi(zi)xi − mi(zi). 

Direct mechanism (Q, M) is  incentive compatible (IC) 
if ∀i, xi, zi, equilibrium payoff function Ui(xi) satisfies 

Ui(xi) ≡ qi(xi)xi − mi(xi) ≥ qi(zi)xi − mi(zi). 



IC implies that 

Ui(xi) =  max  
zi∈ Xi 

{qi(zi)xi − mi(zi)} 

– maximum of a family of affine functions, thus, 

Ui(xi) is convex. 

By comparing expected payoffs of buyer i with zi of 

reporting truthfully (zi) and of reporting xi, we  ob-

tain: 

Ui(zi) ≥ Ui(xi) +  qi(xi)(zi − xi), 

so qi(xi) is the  slope of the  line that “supports”  Ui(x) 

at xi. 

Ui convex → 

Ui is absolutely continuous → 

Ui is differentiable almost everywhere (U 0 i(xi) =  qi(xi) 

and so qi(xi) is non-decreasing) → 

Ui is the integral of its derivative: 

Ui(xi) =  Ui(0) + 
Z xi 

0 
qi(ti)dti. 

Conclusion: The expected payoff to a buyer in an in-

centive compatible direct mechanism (Q,M) depends 

(up to a constant) only on the allocation rule Q. 

Note: IC  ⇐⇒ qi(x) is non-decreasing. 



11 Revenue Equivalence 

Proposition: (Revenue Equivalence) If the direct mech-

anism (Q,M) is incentive compatible, then ∀i, xi the 
expected payment is 

mi(xi) =  mi(0) + qi(xi)xi − 
Z xi 

0 
qi(ti)dti. 

Thus, the expected payments (and so the expected 

revenue to the seller) in any two IC mechanism with 

the same allocation rule are equivalent up to a con-

stant. 

Proof: Ui(xi) =  qi(xi)xi − mi(xi), Ui(0) = −mi(0). 

Substitute. 

11.1 An application of Revenue Equiva-

lence 

Consider symmetric (iid) environment. 

In the second-price auction 

βII(x) =  x. 

and 

m II(x) =  G(x) × E [Y1|Y1 < x] . 

In the first-price auction, since 

m I(x) =  G(x) × b(x) 

we obtain 

βI(x) =  E [Y1|Y1 < x] 

In the all-pay auction 

m A(x) =  βA(x) =  G(x) × E [Y1|Y1 < x] . 



12 Individual rationality 

Direct mechanism (Q, M) is  individually rational (IR) 

if ∀i, xi, 
Ui(xi) ≥ 0. 

Corollary: If mechanism (Q, M) is  IC then it is IR 

if for all buyers Ui(0) ≥ 0 (or  mi(0) ≤ 0). 

13 Optimal mechanisms 

Consider direct mechanism (Q, M). 

The expected revenue to the seller is 

E[R] =  
X 

i∈N 
E[mi(Xi)], where 

E[mi(Xi)] = 
Z ωi 

0 
mi(xi)fi(xi)dxi 

= mi(0) + 
Z ωi 

0 
qi(xi)xifi(xi)dxi 

− 
Z ωi 

0 

Z xi 

0 
qi(ti)fi(xi)dtidxi. 

The last term is equal to (with changing variables of 

integration) Z ωi 

0 

Z ωi 

ti 
qi(ti)fi(xi)dxidti = 

Z ωi 

0 
(1 − Fi(ti)) qi(ti)dti. 

Substituting back 



E[mi(Xi)] 

= mi(0) + 
Z ωi 

0 

Ã 

xi − 
1 − Fi(xi) 

fi(xi) 

! 

qi(xi)fi(xi)dxi 

= mi(0) + 
Z 

X 

Ã 

xi − 
1 − Fi(xi) 

fi(xi) 

! 

Qi(x)f(x)dx. 

Optimal mechanism maximizes E[R] subject to: IC 

and IR. 

14 Solution 

Define the virtual valuation of a buyer with value xi 
as 

ψi(xi) =  xi − 
1 − Fi(xi) 

fi(xi) 
. 

Then seller should choose (Q,M) to maximize 

X 

i∈N 
mi(0) + 

Z 

X 

⎛ ⎝ 
X 

i∈N 
ψi(xi)Qi(x) 

⎞ ⎠ f(x)dx. 

Look at 
P 
i∈N ψi(xi)Qi(x). It is best to give the 

highest weights Qi(x) to the maximal ψi(xi). 

Design problem is regular if for ∀i, ψi(·) is an increas-
ing function of xi. 

Regularity would imply incentive compatibility of the 

optimal mechanism. 



The following is the optimal mechanism (Q,M): 

• Allocation rule Q: 

Qi(x) > 0 ⇐⇒ ψi(xi) = max
j∈ N 

ψj(xj) ≥ 0. 

(qi(xi) is non-decreasing if ψi(xi) is, so we have 

IC.) 

• Payment rule M: (implied by IC and IR) 

Mi(x) =  Qi(x)xi − 
Z xi 

0 
Qi(zi,x− i)dzi. 

(Mi(0,x− i) =  0  for  all  x− i and so mi(0) = 0, so 
we have IR.) 

Define 

yi(x− i) =  

(
inf zi : ψi(zi) ≥ 0 and  ψi(zi) ≥ max 

j 6=i ψj(xj)
) 

– the smallest value for i that “wins” against x− i. 

Thus, 

Qi(zi,x− i) =  

( 
1, if zi > yi(x− i), 
0, if zi < yi(x− i). 

We have Z xi 

0 
Qi(zi,x− i) =  

( 
xi − yi(x− i), if zi > yi(x− i), 
0 , if zi < yi(x− i). 

and, so, 

Mi(x) =  

( 
yi(x− i), if Qi(x) = 1, 
0 , if Qi(x) = 0. 

Proposition: Suppose the design problem is regular 

and symmetric. Then a second-price auction with a 

reserve price r ∗ = ψ− 1(0) is an optimal mechanism. 


