1 Notable features of auctions

e Ancient “market” mechanisms. Widespread in
use. A lot of varieties.

Auctlons 1 . e Simple and transparent games (mechanisms). Uni-

versal rules (does not depend on the object for
sale), anonymous (all bidders are treated equally).

Common auctions &
Revenue equivalence &

e Operate well in the incomplete information envi-
ronments. Seller (and sometimes bidders as well)
does not know how the others value the object.

Optimal mechanisms

e Optimality and efficiency in broad range of set-
tings.

e Probably the most active area of research in eco-
nomics.




2 Notation (Symmetric IPV)

Independent private values setting with symmetric risk-
neutral buyers, no budget constraints.

e Single indivisible object for sale.

e N potential buyers, indexed by . N commonly
known to all bidders.

e X, — valuation of buyer ¢ — maximum willing-

ness to pay for the object.

e X, ~ F[0,w] with continuous f = F’ and full
support.

e X, is private value (signal); all X are iid, which
is common knowledge.

3 Common auctions

SEALED-BID Auctions.

e First price sealed-bid auction:

Each bidder submits a bid b; € R (sealed, or un-
observed by the others). The winner is the buyer
with the highest bid, the winner pays her bid.

e Second price sealed-bid auction:

As above, the winner pays second highest bid —
highest of the bids of the others.

e K'th price auction:

The winner pays the Kth highest price.

e All-pay auction:

All bidders pay their bids.




OPEN (DYNAMIC) Auctions.

Dutch auction:

The price of the object starts at some high level,
when no bidder is willing to pay for it. It is de-
creased until some bidder announces his willing-
ness to buy. He obtains the object at this price.

Note: Dutch and First-price auctions are equiva-
lent in strong sense.

e English auction:

The price of the object starts at zero and in-
creases. Bidders start active — willing to buy the
object at a price of zero. At a given price, each
bidder is either willing to buy the object at that
price (active) or not (inactive). While the price is
increasing, bidders reduce(*) their demands. The
auction stops when only one bidder remains ac-
tive. She is the winner, pays the price at which
the last of the others stopped bidding.

Note: English auction is in a weak sense equiva-
lent to the second-price auction.




4 First-price auction

Payoffs

M — x; — b;, if by > max,;—£; bj,
v 0, otherwise.

Proposition: Symmetric equilibrium strategies in a
first-price auction are given by

B'(z) = BE[vi]y1 < 2],
where Y1 = max;_;{X;}.

Proof: Easy to check that it is eq.strat., let us derive
it.

Suppose every other bidder except 7 follows strictly
increasing (and differentiable) strategy 5(x).

Equilibrium trade-off: Gain from winning versus prob-
ability of winning.

Expected payoff from bidding b when receiving x; is
Gy,(B71(b)) x (z; — b).
FOC:

1
e B Ca G )

B'(871(b))

In symmetric equilibrium, b(x) = B(x), so FOC =
G(x)B'(z) + g(x)B(x) = wg(z),
d
- (G@)8(x) = wg(a)
x ) N
Bz) = @/0 y9(y)dy,
= EW|Y1 <z].
In the first price auction expected payment is

m!(z) = Pr[Win] x b(x)
G(z) x E[Y1|V1 < 7.




5 Examples: 6 Second-price auction

1. Suppose values are uniformly distributed on [0, 1]. Proposition: In a second-price sealed-bid auction, it

F(z) = z, then G(z) = +N—1 and is a weakly dominant strategy to bid

_N-1 8'(z) = z.
Bl(w) = ——=.

2. Suppose values are exponentially distributed on In the second price auction expected payment of the

[0, 00). winner with value z is the expected value of the second
e highest bid given x, which is the expectation of the
F(z) = 1—e 7%, for some A > 0 and N = 2, second-highest value given x.
then
Bl(x) . /x F(y) Thus, expected payment in the second-price auction
F(:c) is
—)\x
= X - m- ml(z) = Pr[Win] x E[Y1|Y1 < 2]

Note that if, say for A = 2, x is very large the bid G(z) x E[Y1]Y1 < z].

would not exceed 50 cents.




7 Notation (IPV) 8 Mechanisms

Independent private values setting with risk-neutral
buyers, no budget constraints. Not necessarily sym- A selling mechanism (B, 7, i) :

metric.
e BB; — a set of messages (or bids) for player .

e Single indivisible object for sale. e m: B — A — allocation rule; here A is the set

of probability distributions over N.

e N potential buyers, indexed by . N commonly
known to all bidders.

e i : B — R" — payment rule.

e X, — private valuation of buyer ¢ — maximum Example: First- and second-price auctions.
willingness to pay for the object.

Every mechanism defines an incomplete information
e X; ~ F;[0,w;] with continuous f; = F/ and full
support, independent across buyers.

game:
e 3;:[0,w;] — B; is a strategy;

o X =xN X, X ;= X j+iXj, f(x) is joint den- e Equilibrium is defined accordingly.
sity.




9 Revelation principle

Direct mechanism (Q, M):
° B = Ay

e Q: X — A, where Q;(x) is the probability that
1 gets the object.

e M : X — R", where M;(x) is the expected pay-
ment by 2.

Proposition: (Revelation principle) Given a mecha-
nism and an equilibrium for that mechanism, there
exist a direct mechanism in which:

1. it is an equilibrium for each buyer to report truth-
fully, and

2. the outcomes are the same.

Proof: Define Q(x) = m(8(x)) and M(x) = u(5(x)).
Verify.

10 Incentive compatibility

Define ¢;(z;) and m;(z;) to be a probability that i gets
the object and her expected payment from reporting
z; while every other bidder reports truthfully:

qi(z;) = /X_. Qi(zi, x—) f—i(x—;)dx_;,

miz) = [ Mizx-)f-i(xi)dx

—1

Expected payoff of the buyer ¢ with value x; and re-
porting z; is

qi(zi)w; — mi(2;).

Direct mechanism (Q, M) is incentive compatible (1C)
if Vi, x;, z;, equilibrium payoff function U;(x;) satisfies

Ui(z;) = qi(x)z; — mi(x;) > qi(2i)x; — my(z;).




I1C implies that
Ui(z;) = max {q;(2;)x; — mi(2;)}
z€X;
— maximum of a family of affine functions, thus,
U;(x;) is convex.

By comparing expected payoffs of buyer ¢ with z; of
reporting truthfully (z;) and of reporting xz;, we ob-
tain:

Ui(zi) 2 Ui(zi) + qi(zi)(zi — z4),
so g;(x;) is the slope of the line that “supports” U;(x)
at x;.

U, convex —
U, is absolutely continuous —

U, is differentiable almost everywhere (U/(z;) = g;(x;)
and so g;(z;) is non-decreasing) —

U, is the integral of its derivative:

Ua) = Ui(©) + [ ai(t)ats

Conclusion: The expected payoff to a buyer in an in-
centive compatible direct mechanism (Q, M) depends
(up to a constant) only on the allocation rule Q.

Note: IC' <= g;(«) is non-decreasing.




11.1 An application of Revenue Equiva-

lence

11 Revenue Equivalence

Consider symmetric (iid) environment.

Proposition: (Revenue Equivalence) If the direct mech- In the second-price auction

anism (Q, M) is incentive compatible, then Vi, z; the B”(a:) = x.
expected payment is and
T
m;(x;) = m;i(0) + g;(x;)x; — /0 q;(t;)dt;. m”(x) = G(z) x E[Y1|Y1 < o].

Thus, the expected payments (and so the expected . . . .
. . . In the first-price auction, since
revenue to the seller) in any two IC mechanism with

the same allocation rule are equivalent up to a con- ml(fﬂ) = G(z) x b(z)
stant. we obtain

B(z) = E[ViIv1 < 2]
Proof: Uj(z;) = qi(zi)z; — mi(x;), Ui(0) = —m;(0).

Substitute. In the all-pay auction

m?(z) = BA(z) = G(z) x E[Y1|Y1 < 2].




12 Individual rationality

Direct mechanism (Q, M) is individually rational (IR)
if V’i, Ty,
Ui(z;) > 0.

Corollary: If mechanism (Q,M) is IC then it is IR
if for all buyers U;(0) > 0 (or m;(0) < 0).

13 Optimal mechanisms

Consider direct mechanism (Q, M).

The expected revenue to the seller is
E[R] = Y E[mi(X;)], where
ieN
w;
Elm;(X;)] = /0 m;(x;) fi(z;)dz;
w;
= mi(0)+/o qi(z)z; fi(w;)dz;
Wi [T
—/0 /0 qi(ti) fi(wi)dt;dw;.

The last term is equal to (with changing variables of
integration)

/0% /:z @i (t;) fi(x;)da;dt; = /Owi (1 — Fi(t;)) qi(t;)dt;.

Substituting back




E[m;(X;)]
_ Wil 1= B(@)\ ey
= mz(o) +/0 (xz fz(xz) ) %(xz)fz(xz)dxz
o 1 Fi®)) 5 o s dx
=m0+ [, (5= 2520 Qe

Optimal mechanism maximizes E[R] subject to: IC
and IR.

14 Solution

Define the virtual valuation of a buyer with value z;
as

1 — F(z;)

pi(x;) = x; — S et 7y
ST i)

Then seller should choose (Q, M) to maximize

m20+ %%sz fXdX
32 mi0) /X(ZEZN (x:) ()) (x)

Look at Y ;e ¥(x;)Qi(x). It is best to give the
highest weights Q;(x) to the maximal v;(z;).

Design problem is regular if for Vi, 1,(-) is an increas-
ing function of x;.

Regularity would imply incentive compatibility of the
optimal mechanism.




The following is the optimal mechanism (Q, M):

e Allocation rule Q:
Qi(x) > 0 <= i(z;) = 5.'53;%(%) > 0.

(g;(x;) is non-decreasing if 1;(x;) is, so we have
I1C.)

e Payment rule M: (implied by IC and IR)

M;(x) = Qi(x)x; — /Oxi Qi(zi, x_i)dz;.

(M;(0,x_;) =0 for all x_; and so m;(0) =0, so
we have IR.)

Define

yi(x—;) = {inf zi 1 1pi(2) > 0 and 1(z;) > max ¢j(fﬁj)}
YE=)

— the smallest value for ¢ that “wins” against x_;.

Thus,
- N )L if > yi(x_;),
Qz(zwx—l) - { 0, if z; < yi(x—i)-
We have
T oy = )T yi(x—g), if 2> yi(x—y),
/0 Qi(zi,x—;) = { 0 , if 2y < yi(x—g).
and, so,

_ ) yi(x—y), if Qi(x) =1,
Mi(x) = { 0 . if Qi(x) = 0.

Proposition: Suppose the design problem is regular
and symmetric. Then a second-price auction with a
reserve price 7* = ¢~1(0) is an optimal mechanism.




