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1 A general incomplete information setting 

1.1 Primitives 

A finite group of players (economic agents), denoted by N = {1, . . . , n}, interact. Any interaction can 
be represented as a simultaneous non-cooperative choice of individual plans of action.1 A set of possible 
decisions or choices (a set of all possible contingent plans of action) is a set of strategies. Denote  Si to be a 
set of strategies available to player i (si ∈ Si is a generic element); s = (s1, . . . , sn) = {si}i∈N is a profile of 
strategies of all the players, s ∈ S = ×i∈N Si; s−i = sr {si}, S−i = S \ Si, s = (si, s−i). A  set  of  alternatives 
(allocations), A, is a set of all possible outcomes. A mechanism is a rule that for any collection of strategies 
selects a probability distribution over the set of alternatives A, M : S ∆(A).→
Example 1: Voting. A  set  of  alternatives  A is a set of possible candidates to be chosen from. Players 

are individuals with a right to vote. Sets of strategies are determined by a voting procedure. In a simple 
ballot voting, for example, each player submits a ballot for some candidate, so Si = A. In a multistage 
voting, like a procedure to select a city to hold Olympics, a strategy has to name a city in the first round of 
voting, a city in the second round of voting conditional on results of the first round, and so on, for each round 
conditional on previous results. A voting mechanism specifies how the winner is selected. For instance, in a 
simple majority voting, bar ties, M(s) = argmaxa∈A #i∈N {si = a}. 
Example 2: Auctions. A set of alternatives A is a set of all possible allocations of goods for sale and 

transfers involved. For example, with one object for sale and only the winner paying, a set of alternatives is 
A = N × R+, a pair  (w,m) ∈ A says that player w ∈ N is the winner and has to pay m. A  set  of  strategies  
depends on an auction format. In sealed-bid auctions, a strategy is a bid, Si = R+.  In open or  dynamic  
auctions, like an English (a usual ascending price) auction, a strategy has to specify how to act (bid) for 
any possible scenario that can occur in the auction. The winner is determined according to the rules of the 
specific format. In the first-price sealed-bid auction the winner is the highest bidder and has to pay own bid. 
Thus, bar ties, w = argmaxi∈N si and m = sw. In the second-price sealed-bid auction the winner is also the 
highest bidder but pays the highest bid among the rest of the participants, m = maxj=w sj .6
Example 3: Public good provision (discrete setting). There is a public project that can be built if 

sufficient funds are collected from citizens (to cover a cost c ∈ R+). Thus, an allocation (b,m1, . . .mn) ∈ 

∗To appear as part of “Secure direct implementation” by Sergei Izmalkov, Matt Lepinsky, and Silvio Micali. 
1 This is called a normal or strategic form representation. For a detailed coverage of game theory and of incomplete information 

games in particular the reader is referred to two excellent textbooks on the subject, Fudenberg and Tirole (1991) and Osborne 
and Rubinstein (1997). 
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{0, 1} × Rn specifies whether a project is built (b = 1) or not  (b = 0), and for each i a transfer  mi.+ 
The strategies depend on the procedure that is used to decide on whether to build and on contributions. 
For example, for the case of private voluntary contributions, each player contributes ci = R+. The  P ∈ Si 
corresponding mechanism sets mi = ci, the project is built, b = 1, only if  i∈N mi ≥ c. 
To complete description of a game players’ preferences over alternatives have to be specified. In a complete 

information setting players preferences are commonly known. In an incomplete information setting some 
players are not certain about preferences of the others. In reality, essentially in any interaction something 
is not known to all participants. How much money or other resources a player has? What are the costs 
of production? What does a player know (or think) about what others know? Often, the answers to these 
questions are only known to the player in focus. 
Following Harsanyi (1967-68), players’ uncertainty is added as follows. A special player, Nature, moves  

first and selects a profile of types, t = {ti}i∈N , ti ∈ Ti, for each of the players according to some commonly 
known distribution p over T = ×i∈N Ti. A  type is a complete description of all relevant characteristics 
of a given player. A player observes her type, beliefs about the types of the others, t−i = t r {ti}, are  
calculated using conditional distribution p(t−i|ti).2 To complete specification, each players’ preferences over 
lotteries over T × A need to be defined. We will assume that these preferences satisfy expected utility 
axioms of von Neumann and Morgenstern, thus it will suffice to specify payoff functions, ui : T × A → R 
for each i. Altogether, a game of incomplete information, or Bayesian game, is described by a septuple, 
Γ = (N, {Ti}i∈N , {Si}i∈N , A,M, {ui}i∈N , p).3 

Note that essentially an incomplete information game can be thought of as a very large game with 
complete but imperfect information. Players in that game are all possible player-type combinations, and, P 
given any selected profile of strategies, a payoff to player (i, ti) is t−i 

p(t−i|ti)ui(t,M(s)). 
Definition: A pure strategy of player i is a function si(ti) that for each ti ∈ Ti selects an element of 

Si. A  mixed strategy of player i is a function σi(ti) that for each ti ∈ Ti selects a probability distribution 
over Si. We  denote  s(t) = (s1(t1), . . . sn(tn)), s−i(t−i) =  s(t) r {si(ti)}, mixed  profiles σ(t) and σ−i(t−i) are 
defined similarly. 
Without any confusion we can define ui(t, s) =  ui(t,M(s)), a payoff to a mixed  σ(t) is 

ui(t, σ(t)) = Eσ1(t1),...,σn(tn)ui(t1, . . . tn, s1, . . . , sn). 

Definition: A selection of (mixed) strategies {σ∗ i (ti)}i∈N is: 
a Bayesian-Nash equilibrium of game Γ if, for each type ti of player i, for any σi(ti), 

E u(ti, σi 
∗(ti), t−i, σ

∗
−i)) ≥ E u(ti, σi(ti), t−i, σ

∗
−i)); (1)t−i −i(t t−i −i(t

a dominant strategy equilibrium of game Γ if, for each type ti of player i, for any σi(ti) and any s−i(t−i),4 

u(ti, σ
∗ 
i (ti), t−i, s−i(t−i)) ≥ u(ti, σi(ti), t−i, s−i(t−i)); (2) 

2 This is sometimes referred as a reduced form construction. An alternative description starts with states of nature, θ ∈ Θ. 
A type is interpeted as a privately observed signal about θ. Types are generated according to signal functions τ i : Θ Ti. For  
a more detailed treatment see Osborne and Rubinstein (1997). 

→ 

3 To define a Bayesian game it suffices to specify N , T , S, p, and payofs over lotteries over T ×S (which is a typical approach). 
A restriction to mechanisms is without loss of generality, since we can always set A = S, and M(s) = s. Alternatives  and  
mechanisms are explicitly introduced for two purposes: to have a more convenient language and to describe explicitly what is 
publicly observable (a resulting allocation, e.g.) and what remains private (actual strategies, e.g.). 

4 It suffices to check dominant strategy incentive constraints only against pure strategies of opponents. Existence of mixed 
strategies that violate the constraints implies existence of pure strategies that do the same. Also note that any pure strategy 
si in the support of σi 

∗(ti) is a (weakly) dominant strategy for player i of type ti. Thus, any selection of pure strategies from 
the support of mixed dominant strategy equilibrium will form a pure dominant strategy equilibrium. 
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an ex post equilibrium of game Γ if, for each type ti of player i, for any σi(ti), for all t−i, 

u(ti, σi 
∗(ti), t−i, σ

∗
−i(t−i)) ≥ u(ti, σi(ti), t−i, σ−i(t−i)).	 (3) 

In words, Bayesian-Nash incentive constraints (1) require a best response against best responses of all the 
players of all possible types, and are the weakest type of constraints. Dominant strategy incentive constraints 
(2) are the strongest and require that a given strategy is a best response against any selection of the strategies 
for any realization of the opponents’ types. Ex post incentive constraints (3) fall in between, selected 
strategies must remain Nash equilibrium strategies for each realization of types. Alternatively, equilibrium 
conditions must hold ex post, even if realized types for all the players become commonly known. Both 
dominant strategy and ex post equilibria are distribution-free, they do not depend on a given specification 
of distribution of types, p. Lastly, any dominant strategy equilibrium is an ex post equilibrium, any ex post 
equilibrium is Bayesian-Nash equilibrium. 
Example 2 (revisited). Consider an auction setting from above (one object, N bidders). The most 

common paradigm in which it is studied is a symmetric independent private values paradigm.5 Each bidder 
learns her own value Vi (this is her type) – a maximal willingness to pay for the object. Valuations of all 
the bidders are identically and independently distributed, and only player i knows her Vi. The simplest case 
is Vi ∼ U [0, 1]; thus,  T = [0, 1]n . For an allocation (w,m) payoffs are  defined as follows: uw(w,m) = Vw − m, 
and for any j = w, uj = 0.6
The first-price sealed bid auction admits a unique Bayesian-Nash equilibrium. In it, each player i follows 

the same strategy,  bI(Vi) =  n−1 Vi.6 This equilibrium is neither in dominant strategies nor ex post. The n 
second-price sealed bid auction has multiple Bayesian-Nash equilibria (and ex post equilibria). It does admit 
a dominant strategy equilibrium. In it, each player simply bids her own value, bII(Vi) = Vi. Because of the 
strong incentive constraints and weak informational requirements (players need not to know anything about 
preferences of the others) this equilibrium is usually selected as a solution to the second-price auction. 

1.2 Direct mechanisms and revelation principle 

Definition: A game is called a direct game if the set of strategies for each player coincides with the set of 
possible types, Si = Ti. A  direct mechanism, is a mechanism of a direct game. 

Theorem 1 (Revelation Principle) 7 For any Bayesian-Nash (dominant strategy, ex post) equilibrium 
{σ∗i (ti)}i∈N of a Bayesian game Γ = (N, {Ti}i∈N , {Si}i∈N , A,M, {ui}i∈N , p) there exists a direct game 
ΓD = (N, {Ti}i∈N , {Ti}i∈N , A,MD , {ui}i∈N , p) such that truthtelling, {s∗ i (ti) = ti}i∈N , 

1. is a Bayesian-Nash (dominant strategy, ex post) equilibrium; 

2. is	 outcome equivalent to the equilibrium of the original (indirect) game: for any t ∈ T,  M(σ∗(t)) = 
MD(t) (as probability distributions over A). 

Proof. Define MD(t) =M(σ∗(t)). Validity of incentive constraints (1) (or (2) for dominant strategies, (3) 
for ex post constraints) for s∗ = t of ΓD trivially follows from the corresponding constraints for Γ. 
The brilliantly simple logic of the revelation principle can be summarized as follows. Imagine that instead 

of playing the game in person each player can ask a trusted agent to play it in her place. Imagine that a 
5 For a comprehensive coverage of auction theory, including facts presented here, the reader is referred to Krishna (2002). 
6 An equilibrium bid b of player i with value V solves maxb(V − b) Pr(b > maxj=6 i bI (Vj )). 
7 Early formulations and utilizations of reveleation priciple appear in Gibbard (1973), Green and Laffont (1977), Dasgupta, 

Hammond, and Maskin (1979), Myerson (1979), Myerson (1981). 
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single trusted party is this trusted agent for each type of each player. Having a particular equilibrium in 
mind, a player needs only to tell the trusted party her type. If a trusted party for each type of player i 
follows an equilibrium strategy of that type, σ∗ i (ti), then it is optimal to make a truthful announcement. 
Indeed, if player i of type ti tells the truth, she trusts the trusted party to select and follow σ∗ i (ti) on her 
behalf. If she reports a different type, perhaps a different strategy would be selected. Clearly, if σ∗(ti) is 
the best strategy for type ti then a different strategy would not be better, so telling the truth is the best 
strategy. 
The most notable application of revelation principle–a cornerstone of mechanism design and imple-

mentation theory–is to answer questions: whether an allocation rule satisfying certain properties can be 
implemented in principle. In the context of Bayesian games, an allocation rule, or a  social choice rule, is a  
function that given a profile of types selects an alternative. To implement the allocation rule is to find a game 
(strategy sets and a mechanism) that has an equilibrium that for each possible profile of types results in the 
alternative prescribed by the allocation rule (sometimes it is required that all equilibria must implement the 
allocation rule). The strength of equilibrium incentive constraints determines the strength of implementation 
(Bayesian-Nash, ex post, or in dominant strategies). 
By revelation principle, if an allocation rule is implemented by some game, then it is also implemented 

truthfully by the corresponding direct game, and so the (direct) mechanism of the direct game coincides 
with the allocation rule. Thus, to verify whether a given allocation can be implemented it suffices to check 
whether it satisfies equilibrium incentive constraints. If it can be shown that incentive constraints are 
necessarily violated, a given allocation rule cannot be implemented. If they are satisfied, a direct game with 
the mechanism equal to the allocation rule is a game that implements it. 
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