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1 Bounded Rationality

Three reasons to study:
e Hope that it will generate a unified framework for behavioral economics

e Some phenomena should be captured: difficult-easy difference. It would
be good to have a metric for that

e Artificial intelligence

Warning — a lot of effort spend on bounded rationality since Simon and few
results: there are many attempts but none is developed in cumulative fashion.



Three directions:

e Analytical models

— Don't get all the fine nuances of the psychology, but those models are

tractable.

e Process models, e.g. artificial intelligence

— Rubinstein (Modelling bounded rationality, MIT Press) direction. Sup-
pose we play Nash, given your reaction function, my strategy optimizes
on both outcome and computing cost. Rubinstein proves some exis-
tence theorems. But it is very difficult to apply his approach.



e Psychological models

— Those models are descriptively rich, but unsystematic, and often hard
to use.



Human - computer comparison (see Kurzweil, The Age of Spritual Machine)
e Human mind 101° operations per second
e Computer 1012 operations per second
e Moore's law: every 1.5 years computer power doubles
e Thus, every 15 years computer power goes up 103

e If we believe this, then in 45 years computers can be 10% more powerful
than humans

e Of course, we'll need to understand how human think



1.1 Analytical models

e Bounded Rationality as noise. Consumer sees a noisy signal § = q + o¢
of quantity/quality q, noise oe has standard deviation o and mean 0.

e Bounded Rationality as imperfect monitoring of the state of the world.
People don't think about the variables all the time. They look up variable

k at times tq, ..., tn.



e Bounded Rationality as adjustment cost. Let 6 denote the state of the
world.

— Now | am doing ag and k = cost of decision/change

— | change my decision from ag to a* = arg maxu (a, 6;) iff

u(a®,0¢) —u(ag,0:) > K



1.1.1 Model of Bounded Rationality as noise

e Random utility model — Luce (psychologist) and McFadden (econometri-
cian who provided econometric tools for the models)

— n goods, 1t =1,...,n.
— Imagine the consumer chooses
maxq; + 0;&;
(4

— What's the demand function?



e Definition. The Gumbel distribution GG is

—X

F(x)=P(e<z)=¢€e °

and have density

T

fx)=F'(x)=e°¢ 7%



e If € has the Gumbel distribution then Ee = v > 0, where v ~ 0.577 is
the Euler constant.

e Proposition 1. Suppose ¢; are iid Gumbel. Then
P ( max g+ q; < Inn—i—q;—i—a:) —e "
1=1,...n

with ¢ defined as edn — %2 e%i. This means that

My = max g +q¢ ="Inn+q¢’+n

1=1,...n

and 7 is a Gumbel.



Proof of Proposition 1.

e CallI =P (maXz':l,..,n i+ q; < y) :

e [hen
I=P((Vi)e; +q; <y) =M1 P(e; + ¢ <)
e [hus,
InI=> P(g;+q <y)
and

NP(ei+q <y)=InP(e <y—q)=—e W),



e [hus

In I — Z —6_(y_Q’L) — _e_y Z QQi

e Using

edn — 1 S el
n

we have

InI = —e Yneln = —e~[y—INn—qy]

which proves that I is a Gumbel. QED



Demand with noise

e Demand for good n + 1 equals

1=1,..,n

Dn—I—l (Q1a eey Qn—l—l) =P (577,—{—1 + qnt+1 > max g; + q;

where g; is total quality, including the disutility of price.

e Proposition 2.

Dn—i—l (Q].)"')CI’FH—].) — n—+1

In general,

el
Dj:P<5j‘|'Qj>rg?;<5i+Qi>: 1

)



Proof of Proposition 2.

e Observe that Z?;rll D; =1.

e Note

Dpy1(q1, - @ny1) =P <5n—|—1 > max g; + q;)

1=1,...n

where q; = ¢; — qp+1.

e [hus,

—\& —|nn—q*
Dn—l—l (Q1, e qn_H) — Fe € (en+1 5)



e Calla= —Inn —gq;,. Then

_ _(En 1—|—a)
Dyi1(q1s s Gny1) = Ee ¢ "
— /e_e_(ﬁa)f(iv) dr = /e_e_(x+a)e_e_x_wdx

_ /e_e(:c+a)_ex_xdx _ /e_ex(ea+1)_xdx

e Call H =1+ e % and re-write the above equation as

Dp+1(q1s -5 Gn+1)
_ /e_e(xInH)_xdx

_ / —e @) _(g—InH) —InH 4.



e Note that

e Thus
_ _—x—InH +00 1
Dpi1(q1, o ny1) =e "2 [6 © } dr = -
— 00
B 1 B 1 B 1 B 1
o —a Inn+qf qs /
1+e 1+e 1+ ne 1_|_Z?L,%:16qz
1 edn+1

1+ 30 edi=ntl  edn+l 4 edntl 1 L edi—dnt1 B

QED



Demand with noise cont.

e This is called “discrete choice theory”.
— It is exact for Gumbel.

— It is asymptotically true for almost all unbounded distributions you can
think off like Gaussian, lognormal, etc.



e Dividing total quality into quality and price components

Dy =P<Q1—p1+0€1 > max Qi_pi+05i>

1=2,...,n

where g; are iid Gumbel, ¢ > 0.

e [hen

e This is very often used in 10.



Optimal pricing. An application — example

e Suppose we have n firms, n > 1.

e Firm 2 has cost ¢; and does

max (p; — ¢;) Di (p1, -, Pn) =



e Denote the profit by 7; and note that

a1—P1
e o

4,—P;
—1€¢ ¢

Inm; = In |(p; — ¢;)

TL

. n q] p]
:In(pz-—cz-)—l—qz —In (Z )
o o

and

o) 1 1 —e_(@>




e So

1 1
——=>~0

Pi—¢ O

and unit profits

pi—¢ =0

e Thus decision noise is good for firms’ profits. See Gabaix-Laibson “Com-
petition and Consumer Confusion”

e Evidence: car dealers sell cars for higher prices to women and minorities
than to white men. Reason: difference in expertise. There is lots of other
evidence of how firms take advantage of consumers. See paper by Susan
Woodward on mortgage refinancing markets: unsophisticated people are
charged much more than sophisticated people.



