
6.207/14.15: Networks Problem Set 5 Due: Wednesday, December 2, 2009 

Problem 1. [Cooperation over social network]

Consider a social network, in which agents are matched pairwise at each date according to a matrix of

probabilities P (where all entries of P are strictly positive). Once matched, each pair plays the prisoner’s

dilemma game with the following payoffs.


prisoner 1 / prisoner 2 Cooperate Defect 
Cooperate 1, 1 -1, 2 

Defect 2, -1 0, 0 

Table 1: Prisoner’s Dilemma 

1. Consider trigger strategies in which each player chooses its actions against a specific opponent only 
according to the history of their own past interactions. Show that for any discount factor δ < 1, there 
exist matching probabilities such that players will not be able to support cooperation with more than 
one other player. 

2. Suppose now that strategies are function of the specific opponents entire history (against each of his 
past opponents). In this case, show that cooperation against all players can be supported for δ ≥ 1/2. 

Problem 2. [Network effects] 
Consider the following dynamic game among N players. At each date, all players simultaneously choose 
whether to use a new technology. If in the previous state, at least one other person used the technology, the 
payoff from using the technology is 1. Otherwise it is −γ (this includes the payoff of using it in the initial 
date, since the technology was not used by anybody prior to the beginning of the game). The payoff from 
not using the technology is always equal to 0. Each player discounts the future at the rate δ. 

1. Show that if in the initial date a single player, say player i, has used the new technology, then all other 
players will use the new technology at all future dates. What about player i? 

2. Now consider a situation in which no individual has used the technology in the initial period. Show 
that if δ is sufficiently close to 1, an individual can use the technology, induce everybody else to use 
this technology and obtain higher payoff than the situation in which the technology is not used. 

3. Finally, show that there exists a symmetric mixed strategy equilibrium in which each player uses the 
technology with probability p at each date if in the previous state the technology was not used. Write 
down the expression that gives p. 

Problem 3. [Bertrand competition under imperfect information] Consider the Bertrand game between 
two firms. There is one unit of demand with reservation price R (R ≥ 1) and each firm has marginal 
cost of production ci, i = 1, 2 drawn uniformly at random from [0, 1]. Find the symmetric Bayesian-Nash 
equilibrium of this game. 

Problem 4. [Herding with crazy types] Consider the basic herding model, where a sequence of agents are 
choosing between Chinese and Indian restaurants. Assume that the Chinese restaurant is the better one 
with probability 1/2. Each agent is one of two types. Regular types have probability α and crazy types 
that have probability 1 − α. Regular types receive a binary signal indicating whether the Chinese or Indian 
restaurant is higher quality that is correct with probability p > 1/2. Crazy types randomly choose one of 
the two restaurants regardless of history of past choices. Show that if the first n players choose the Chinese 
restaurant there will be a herd in which all regular types, regardless of their signal, choose the Chinese 
restaurant. Characterize n as a function of α and p (It suffices to obtain the inequality that n has to satisfy). 
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