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Networks: Lecture 2 Introduction 

Outline 

Types of networks 

Graphs: notation and terminology 
Properties of networks: 

Diameter, average path length, clustering, degree distributions, 
centrality 

Reading: 

Jackson, Chapters 2 and 3 

EK, Chapters 2 and 13 
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Networks: Lecture 2 Introduction 

Networks in the Real World


A network is a set of items (nodes or vertices) connected by edges or 
links. 

Systems taking the form of networks abound in the world. 
Types of Networks: 

Social and economic networks: A set of people or groups of people 
with some pattern of contacts or interactions between them. 

Facebook, friendship networks, business relations between companies, 
intermarriages between families, labor markets 
Questions: Degree of connectedness, homophily, small-world effects 

Information networks: Connections of “information” objects. 
Network of citations between academic papers, World Wide Web 
(network of Web pages containing information with links from one page 
to other), semantic (how words or concepts link to each other) 
Questions: Ranking, navigation 
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Networks: Lecture 2 Introduction 

Networks in the Real World (Continued) 

Types of Networks: 
Technological networks: Designed typically for distribution of a 
commodity or service. 

Infrastructure networks: e.g., Internet (connections of routers or 
administrative domains), power grid, transportation networks (road, 
rail, airline, mail) 
Temporary networks: e.g., ad hoc communication networks, sensor 
networks, autonomous vehicles 
Questions: Does network structure support performance? Fragility? 
Cascading failures? 

Biological networks: A number of biological systems can also be 
represented as networks. 

Food web, protein interaction network, network of metabolic pathways 
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Networks: Lecture 2 Introduction 

Network Study 

Historical study of networks: 
Mathematical graph theory: One of the pillars of discrete mathematics 

Started with Euler’s celebrated 1735 solution of the K önigsberg bridge 
problem. 

Networks also studied extensively in sociology. 
Typical studies involve circulation of questionnaires, leading to small 
networks of interactions. 

Recent years witnessed a substantial change in network research. 
From analysis of single small graphs (10-100 nodes) to statistical 
properties of large scale networks (million-billion nodes). 
Motivated by availability of computers and computer networks that 
allow us to gather and analyze large scale data. 

New Analytical Approach: 
Find statistical properties that characterize the structure of these 
networks and ways to measure them 
Create models of networks 
Predict behavior of networks on the basis of measured structural 
properties and models 
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Networks: Lecture 2 Graphs 

Graphs—1 

We represent a network by a graph (N, g ), which consists of a set of nodes 
N = {1, . . . , n} and an n × n matrix g = [gij ]i ,j∈N (referred to as an 
adjacency matrix), where gij ∈ {0, 1} represents the availability of an edge 
from node i to node j . 

The edge weight gij > 0 can also take on non-binary values, 
representing the intensity of the interaction, in which case we refer to 
(N, g ) as a weighted graph. 

We refer to a graph as a directed graph (or digraph) if gij �= gji and an 
undirected graph if gij = gji for all i , j ∈ N. 

⎡ ⎤ 
0 1 0


Example 1: ⎣ 0 0 1 ⎦
⇒
1 0 0 

1 

2 3 

⇒ 

1 1 ⎡ ⎤ 
0 1 1 

Example 2: ⎣ 1 0 1 ⎦ ⇒
1 1 0 

2 3 2 3 
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Networks: Lecture 2 Graphs 

Graphs—2 

Another representation of a graph is given by (N, E ), where E is the 
set of edges in the network. 

For directed graphs: E is the set of “directed” edges, i.e., (i , j) ∈ E . 
For undirected graphs: E is the set of “undirected” edges, i.e., 
{i , j} ∈ E .


In Example 1, Ed = {(1, 2), (2, 3), (3, 1)}


In Example 2, Eu = {1, 2}, {1, 3}, {2, 3}


When are directed/undirected graphs applicable?

Citation networks: directed

Friendship networks: undirected


We will use the terms network and graph interchangeably. 

We will sometimes use the notation (i , j) ∈ g (or {i , j} ∈ g) to 
denote gij = 1. 
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Networks: Lecture 2 Graphs 

Walks, Paths, and Cycles—1 

We consider “sequences of edges” to capture indirect interactions. 

For an undirected graph (N, g ): 

A walk is a sequence of edges {i1, i2}, {i2, i3}, . . . , {iK −1, iK }.

A path between nodes i and j is a sequence of edges

{i1, i2}, {i2, i3}, . . . , {iK −1, iK } such that i1 = i and iK = j , and each

node in the sequence i1, . . . , iK is distinct.

A cycle is a path with a final edge to the initial node.

A geodesic between nodes i and j is a “shortest path” (i.e., with

minimum number of edges) between these nodes.


A path is a walk where there are no repeated nodes.


The length of a walk (or a path) is the number of edges on that walk (or 
path). 

For directed graphs, the same definitions hold with directed edges (in which 
case we say “a path from node i to node j”). 
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Networks: Lecture 2 Graphs 

Walks, Paths, and Cycles—2 

i j i j i j i j 

walk path between i and j cycle shortest path 

Note: Under the convention gii = 0, the matrix g2 tells us number of 
walks of length 2 between any two nodes: 

(g × g )ij = ∑k gik gkj 

Similarly, gk tells us number of walks of length k. 
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Networks: Lecture 2 Graphs 

Connectivity and Components 

An undirected graph is connected if every two nodes in the network 
are connected by some path in the network. 
Components of a graph (or network) are the distinct maximally 
connected subgraphs. 
A directed graph is 

connected if the underlying undirected graph is connected (i.e., 
ignoring the directions of edges). 
strongly connected if each node can reach every other node by a 
“directed path”. 

1 

2 3 

Figure: A directed graph that is connected but not strongly connected 
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Networks: Lecture 2 Graphs 

Trees, Stars, Rings, Complete and Bipartite Graphs 

A tree is a connected (undirected) graph with no cycles. 
A connected graph is a tree if and only if it has n − 1 edges. 
In a tree, there is a unique path between any two nodes. 

Complete graph Ring Star 

Bipartite graph 

Tree actors movies 
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Networks: Lecture 2 Graphs 

Neighborhood and Degree of a Node 

The neighborhood of node i is the set of nodes that i is connected to. 
For undirected graphs: 

The degree of node i is the number of edges that involve i (i.e., 
cardinality of his neighborhood). 

For directed graphs: 
Node i ’s in-degree is ∑j gji . 
Node i ’s out-degree is ∑j gij . 

1 2 

4 3 

Figure: Node 1 has in-degree 1 and out-degree 2 

12 



(n− 1)p
Expected number of edges is E[number of edges] = n(n−1)

2 p

Networks: Lecture 2 Properties of Networks 

Properties of Networks 

While a small network can be visualized directly by its graph (N, g ), 
larger networks can be more difficult to envision and describe. 
Therefore, we define a set of summary statistics or quantitative 
performance measures to describe and compare networks (focus on 
undirected graphs): 

Diameter and average path length 
Clustering 
Centrality 
Degree distributions 

A Simple Random Graph Model—Erdös-Renyi model 
We use the notation G (n, p) to denote the undirected Erdös-Renyi 
graph. 
Every edge is formed with probability p ∈ (0, 1) independently of 
every other edge. 
Expected degree of a node i is E[di ] = 
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Expected number of edges is E[number of edges] = n(n−1)
2 p
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Networks: Lecture 2 Properties of Networks 
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Networks: Lecture 2 Properties of Networks 
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Networks: Lecture 2 Properties of Networks 

Diameter and Average Path Length 

Let l(i , j) denote the length of the shortest path (or geodesic) 
between node i and j (or the distance between i and j). 
The diameter of a network is the largest distance between any two 
nodes in the network: 

diameter = max l(i , j) 
i ,j 

The average path length is the average distance between any two 
nodes in the network: 

∑i ≥j l(i , j)
average path length = 

n(n−1) 
2 

Average path length is bounded from above by the diameter; in some 
cases, it can be much shorter than the diameter. 
If the network is not connected, one often checks the diameter and 
the average path length in the largest component. 
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Networks: Lecture 2 Properties of Networks 

Clustering 

Measures the extent to which my friends are friends with one another. 

This clustering measure is represented by the overall clustering 
coefficient Cl(g ), given by 

Cl(g ) = 
3 × number of triangles in the network 

,
number of connected triples of nodes 

where a “connected triple” refers to a node with edges to an 
unordered pair of nodes. 

Note that 0 ≤ Cl(g ) ≤ 1. 
Cl(g ) measures the fraction of triples that have their third edge filled 
in to complete the triangle. 
Also referred to as network transitivity: measures the extent that a 
friend of my friend is also my friend. 
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Networks: Lecture 2 Properties of Networks 

Clustering (Continued) 

Another measure of clustering is defined on an individual node basis: 
The individual clustering for a node i is 

Cli (g ) = 
number of triangles connected to vertex i 

. 
number of triples centered at i 

The average clustering coefficient is ClAvg (g ) = n 
1 ∑i Cli (g ). 

Figure: The overall clustering coefficient for this network is 3/8. The individual 
clustering for the nodes are 1, 1, 1/6, 0, and 0. 

What is the individual clustering for a node in the Erdös-Renyi model?
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Networks: Lecture 2 Properties of Networks 

Centrality 

A micro measure that captures the importance of a node’s position in 
the network. 
Different measures of centrality 

Degree centrality: for node i , 

di (g )/n − 1, where di (g ) is the degree of node i 

Closeness centrality: Tracks how close a given node is to any other 
node: for node i , one such measure is 

∑j=

n 

i 

− 
l(

1 
i , j) 

, where l(i , j) is the distance between i and j 

Betweenness centrality: Captures how well situated a node is in terms 
of paths that it lies on (see the Florentine marriages example from the 
previous lecture). 
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Networks: Lecture 2 Properties of Networks 

Degree Distributions 

The degree distribution, P(d), of a network is a description of relative 
frequencies of nodes that have different degrees d . 

For a given graph: P(d) is a histogram, i.e., P(d) is the fraction of 
nodes with degree d . 
For a random graph model: P(d) is a probability distribution. 

Two types of degree distributions: 

P(d) ≤ c e−αd , for some α > 0 and c > 0: The tail of the distribution 
falls off faster than an exponential, i.e., large degrees are unlikely. 
P(d) = c d−γ, for some γ > 0 and c > 0: Power-law distribution: 
The tail of the distribution is fat, i.e., there tend to be many more 
nodes with very large degrees. 

Appear in a wide variety of settings including networks describing 
incomes, city populations, WWW, and the Internet 
Also known as a scale-free distribution: a distribution that is unchanged 
(within a multiplicative factor) under a rescaling of the variable 
Appear linear on a log − log plot 

What is the degree distribution of the Erdös-Renyi model? 
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