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Erdos-Renyi Random Graph Model

@ We use G(n, p) to denote the undirected Erdds-Renyi graph.

@ Every edge is formed with probability p € (0, 1) independently of every
other edge.

@ Let /; € {0,1} be a Bernoulli random variable indicating the presence of
edge {i,j}.
@ For the Erdos-Renyi model, random variables /;; are independent and

[ — 1 with probability p,
U7 1 0 with probability 1 — p.

o E[number of edges| = E[Y [;;] = n(nTA)P

@ Moreover, using weak law of large numbers, we have for all &« > 0

113(2/,-]-—”(”2_1),) >zx”(”2_1))—>o,

as n — oo. Hence, with this random graph model, the number of edges is a
random variable, but it is tightly concentrated around its mean for large n.




Properties of Erdos-Renyi model

@ Recall statistical properties of networks:

o Degree distributions
o Clustering
o Average path length and diameter

@ For Erdos-Renyi model:
o Let D be a random variable that represents the degree of a node.
e D is a binomial random variable with E[D] = (n—1)p, i.e.,
P(D=d)=(";")p’(1—p)" 7
o Keeping the expected degree constant as n — oo, D can be
approximated with a Poisson random variable with A = (n— 1)p,
e Ad
—r
hence the name Poisson random graph model.
o This degree distribution falls off faster than an exponential in d, hence
it is not a power-law distribution.
o Individual clustering coefficient= Cl;(p) = p.
o Interest in p(n) — 0 as n — oo, implying Cl;(p) — 0.
o Diameter:?

P(D = d) =



Other Properties of Random Graph Models

@ Other questions of interest:
e Does the graph have isolated nodes? cycles? Is it connected?

@ For random graph models, we are interested in computing the probabilities
of these events, which may be intractable for a fixed n.

@ Therefore, most of the time, we resort to an asymptotic analysis, where we
compute (or bound) these probabilities as n — oo.

@ Interestingly, often properties hold with either a probability approaching 1 or
a probability approaching 0 in the limit.

@ Consider an Erdds-Renyi model with link formation probability p(n) (again
interest in p(n) — 0 as n — o).

ek P (conndeted) = 0

@ The graph experiences a phase transition as a function of graph parameters
(also true for many other properties).



Branching Processes

To analyze phase transitions, we will make use of branching processes.
The Galton-Watson Branching process is defined as follows:

Start with a single individual at generation 0, Zy = 1.

Let Z, denote the number of individuals in generation k.

Let ¢ be a nonnegative discrete random variable with distribution py, i.e.,
PE=k =pc.  E[f]=p  var(() #0.

Each individual has a random number of children in the next generation,
which are independent copies of the random variable ¢.

This implies that
Z; .
Z1 =4, =) C(’)(sum of random number of rvs).
i=1
and therefore,
E(Z)] = u, E[Z]=E[E[Z | Z1]] = E[uZ1] = %,
and E[Z,] = p".



Branching Processes (Continued)

@ Let Z denote the total number of individuals in all generations,
Z=Y"12Z,.

o We consider the events Z < oo (extinction) and Z = oo (survive
forever).

@ We are interested in conditions and with what probabilities these
events occur.

e Two cases:

o Subcritical (3 < 1) and supercritical (u > 1)
@ Subcritical: p <1
e Since E[Z,] = ", we have

E[Z] = [EZ}zilE[Zn}zl_‘u<oo,

(some care is needed in the second equality).
@ This implies that Z < oo with probability 1 and IP(extinction) = 1.



Branching Processes (Continued)

Supercritical: p > 1

Recall pgp = IP(¢ = 0). If pg = 0, then P(extinction) = 0.
Assume pg > 0.

We have p = P(extinction) > P(Zy = 0) = pg > 0.

We can write the following fixed-point equation for p:
ok _
p=) pp" = E[p°] = ®(p).
k=0

We have ®(0) = pg (using convention 09 = 1) and ®(1) =1
® is a convex function (®”(p) > 0 for all p € [0,1]), and ®'(1) = u > 1.

Py’

Figure: The generating function ® has a unique fixed point p* € [0, 1).



Phase Transitions for Erdos-Renyi Model

@ Erdds-Renyi model is completely specified by the link formation probability
p(n).

@ For a given property A (e.g. connectivity), we define a threshold function
t(n) as a function that satisfies:

IP(property A) — 0 if pn) — 0,and

t(n)

IP(property A) — 1 if lz(—n) — 0

n)

e This definition makes sense for “monotone or increasing properties,”
i.e., properties such that if a given network satisfies it, any
supernetwork (in the sense of set inclusion) satisfies it.

@ When such a threshold function exists, we say that a phase transition occurs
at that threshold.

@ Exhibiting such phase transitions was one of the main contributions of the
seminal work of Erdos and Renyi 1959.



Phase Transition Example

@ Define property A as A = {number of edges > 0}.

@ We are looking for a threshold for the emergence of the first edge.

n 1) n2

@ Recall E[number of edges] = p(n) = Z-p(n).

p(n)

@ Assume £ 5/ — 0asn—co Then, E[number of edges|]— 0, which implies
that IP(number of edges > 0) — 0.

p(n )
2/n?

@ This does not in general imply that IP(number of edges > 0) — 1.

@ Assume next that

— 00 as n — 00. Then, E[number of edges]— co.

@ Here it follows because the number of edges can be approximated by a
Poisson distribution (just like the degree distribution), implying that

e Ak

k!
k=0

P(number of edges = 0) = =e M

@ Since the mean number of edges, given by A, goes to infinity as n — oo, this
implies that IP(number of edges > 0) — 1.
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Phase Transitions

@ Hence, the function t(n) = 1/n? is a threshold function for the emergence
of the first link, i.e.,

o When p(n) << 1/n?, the network is likely to have no edges in the
limit, whereas when p(n) >> 1/n?, the network has at least one edge
with probability going to 1.

@ How large should p(n) be to start observing triples in the network?
o We have E[number of triples] = n3p?, using a similar analysis we can

show t(n) = # is a threshold function.

@ How large should p(n) be to start observing a tree with k nodes (and k — 1
arcs)?
o We have E[number of trees] = n“pk~—1, and the function
t(n) = # is a threshold function.
@ The threshold function for observing a cycle with k nodes is t(n) = %

o Big trees easier to get than a cycle with arbitrary size!

11



Phase Transitions (Continued)

@ Below the threshold of 1/n, the largest component of the graph includes no
more than a factor times log(n) of the nodes.

@ Above the threshold of 1/n, a giant component emerges, which is the
largest component that contains a nontrivial fraction of all nodes, i.e., at
least cn for some constant c.

@ The giant component grows in size until the threshold of log(n)/n, at which
point the network becomes connected.
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Networks: Lecture 3

Phase Transitions (Continued)

Introduction
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Figure: A first component with more than two nodes: a random network on 50
nodes with p = 0.01.
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Networks: Lecture 3 Introduction

Phase Transitions (Continued)

Figure: Emergence of cycles: a random network on 50 nodes with p = 0.03.

14



Networks: Lecture 3 Introduction

Phase Transitions (Continued)

Figure: Emergence of a giant component: a random network on 50 nodes with
p = 0.05.
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Introduction

Lecture 3

Networks:

Phase Transitions (Continued)

Figure: Emergence of connectedness: a random network on 50 nodes with

p = 0.10.
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Networks: Lecture 3 Introduction

Threshold Function for Connectivity

Theorem

(Erdos and Renyi 1961) A threshold function for the connectivity of the Erdés
and Renyi model is t(n) = @.

@ To prove this, it is sufficient to show that when p(n) = A(n) log( ") with
A(n) — 0, we have IP(connectivity) — 0 (and the converse).

@ However, we will show a stronger result: Let p(n) = /\Iogn(")

IfA <1, IP(connectivity) — 0, (1)
IfA>1, IP(connectivity) — 1. (2)
Proof:

@ We first prove claim (1). To show disconnectedness, it is sufficient to show
that the probability that there exists at least one isolated node goes to 1

17



Proof (Continued)

@ Let /; be a Bernoulli random variable defined as
I — 1 if node i is isolated,
710 otherwise.

@ We can write the probability that an individual node is isolated as
g=P(i=1)=(1-p" txe P =e B0 _pt (3
n
where we use limp_ o (1 - %) = e~ ? to get the approximation.

@ Let X = )" ; /; denote the total number of isolated nodes. Then, we have
E[X] =n-n"*, (4)

@ For A < 1, we have E[X] — co. We want to show that this implies
P(X =0) —0.
o In general, this is not true.
e Can we use a Poisson approximation (as in the previous example)? No,
since the random variables /; here are dependent.

o We show that the variance of X is of the same order as its mean.
18



Proof (Continued)

@ We compute the variance of X, var(X):
var(X) =Y var(l)+ ) ) cov(l;, /)
i i i
= nvar(l) + n(n—1)cov(h, h)

= nq(1—q)+n(n—1)(E[hL] - E[L]E[A]),

where the second and third equalities follow since the /; are identically
distributed Bernoulli random variables with parameter g (dependent).

@ We have
E[hh] = P(h =1k =1)=1P(both 1and 2 are isolated)
2
— (1—p23__9
(1-p) i—p)
@ Combining the preceding two relations, we obtain
_ . _ q 2
var(X) = nq(l—gq)+n(n—1) [(1 ) q ]
9°p

= nq(l—q)+n(n—1)1_p.




Proof (Continued)

@ For large n, we have ¢ — 0 [cf. Eq. (3)], or 1 — g — 1. Also p — 0. Hence,

var(X) ~ ng+ nzqzlfp
= nn~*+ Anlog(n)n=2*
~ N = E[X],

~ nq+ n*q?p

where a(n) ~ b(n) denotes 2N 1 as n — 0.

b(n)
@ This implies that

E[X] ~ var(X) > (0 — E[X])?PP(X = 0),

and therefore, X]
E[X 1
P(X=0)< = —— 0.
X=9 < gz =B

@ It follows that IP(at least one isolated node) — 1 and therefore,
IP(disconnected) — 1 as n — co, completing the proof.
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Converse

@ We next show claim (2), i.e., if p(n) = A'%61") with A > 1, then
IP(connectivity) — 1, or equivalently IP(disconnectivity) — O.

@ From Eq. (4), we have E[X] =n-n~* — 0 for A > 1.

@ This implies probability of isolated nodes goes to 0. However, we need more
to establish connectivity.

@ The event “graph is disconnected” is equivalent to the existence of k nodes
without an edge to the remaining nodes, for some k < n/2.
@ We have
IP({1,..., k} not connected to the rest) = (1 — p)k(n=k),

and therefore,

P(3 k nodes not connected to the rest) = (:) (1— p)k(”*k).
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Networks: Lecture 3 Introduction

Converse (Continued)
@ Using the union bound [i.e. P(U;A;) < Y.; IP(A;)], we obtain

n/2 n
IP(disconnected graph) < 1— p)k(n=k),
( graph) < k; <k>( p)

k
@ Using Stirling's formula k! ~ (g) , which implies (}) < (Z,;k
preceding relation and some (ugly) algebra, we obtain ’

in the

IP(disconnected graph) — 0,

completing the proof.
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