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Phase Transitions for Erdos-Renyi Model

@ Erdds-Renyi model is completely specified by the link formation probability
p(n).

@ For a given property A (e.g. connectivity), we define a threshold function
t(n) as a function that satisfies:

IP(property A) — 0 if pn) — 0,and

t(n)

IP(property A) — 1 if 'l;(—n) — 0

n)

e This definition makes sense for “monotone or increasing properties,”
i.e., properties such that if a given network satisfies it, any
supernetwork (in the sense of set inclusion) satisfies it.

@ When such a threshold function exists, we say that a phase transition occurs
at that threshold.

@ Exhibiting such phase transitions was one of the main contributions of the
seminal work of Erdos and Renyi 1959.
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Threshold Function for Connectivity

Theorem

(Erdos and Renyi 1961) A threshold function for the connectivity of the Erdés
and Renyi model is t(n) = @.

@ To prove this, it is sufficient to show that when p(n) = A(n) log( ") with
A(n) — 0, we have IP(connectivity) — 0 (and the converse).

@ However, we will show a stronger result: Let p(n) = /\Iogn(")

IfA <1, IP(connectivity) — 0, (1)
IfA>1, IP(connectivity) — 1. (2)
Proof:

@ We first prove claim (1). To show disconnectedness, it is sufficient to show
that the probability that there exists at least one isolated node goes to 1



Proof (Continued)

@ Let /; be a Bernoulli random variable defined as
I — 1 if node i is isolated,
710 otherwise.

@ We can write the probability that an individual node is isolated as
g=P(i=1)=(1-p" txe P =e B0 _pt (3
n
where we use limp_ o (1 - %) = e~ ? to get the approximation.

@ Let X = )" ; /; denote the total number of isolated nodes. Then, we have
E[X] =n-n"*, (4)

@ For A <1, we have E[X] — oco. We want to show that this implies
P(X =0) —0.
o In general, this is not true.
e Can we use a Poisson approximation (as in the example from last
lecture)? No, since the random variables /; here are dependent.
o We show that the variance of X is of the same order as its mean.



Proof (Continued)

@ We compute the variance of X, var(X):
var(X) =Y var(l)+ ) ) cov(l;, /)
i i i
= nvar(l) + n(n—1)cov(h, h)

= nq(1—q)+n(n—1)(E[hL] - E[L]E[A]),

where the second and third equalities follow since the /; are identically
distributed Bernoulli random variables with parameter g (dependent).

@ We have
E[hh] = P(h =1k =1)=1P(both 1and 2 are isolated)
2
— (1—p23__9
(1-p) i—p)
@ Combining the preceding two relations, we obtain
_ . _ q 2
var(X) = nq(l—gq)+n(n—1) [(1 ) q ]
9°p

= nq(l—q)+n(n—1)1_p.




Proof (Continued)

@ For large n, we have ¢ — 0 [cf. Eq. (3)], or 1 — g — 1. Also p — 0. Hence,

var(X) ~ ng+ nzqzlfp
= nn~*+ Anlog(n)n=2*
~ N = E[X],

~ nq+ n*q?p

where a(n) ~ b(n) denotes 2N 1 as n — 0.

b(n)
@ This implies that

E[X] ~ var(X) > (0 — E[X])?PP(X = 0),

and therefore, X]
E[X 1
P(X=0)< = —— 0.
X=9 < gz =B

@ It follows that IP(at least one isolated node) — 1 and therefore,
IP(disconnected) — 1 as n — co, completing the proof.



Converse

@ We next show claim (2), i.e., if p(n) = A'%61") with A > 1, then
IP(connectivity) — 1, or equivalently IP(disconnectivity) — O.

@ From Eq. (4), we have E[X] =n-n~* — 0 for A > 1.

@ This implies probability of having isolated nodes goes to 0. However, we
need more to establish connectivity.

@ The event “graph is disconnected” is equivalent to the existence of k nodes
without an edge to the remaining nodes, for some k < n/2.

@ We have

IP({1,..., k} not connected to the rest) = (1 — p)k(n=k),

and therefore,

P(3 k nodes not connected to the rest) = (:) (1— p)k(”*k).
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Converse (Continued)
@ Using the union bound [i.e. P(U;A;) < Y.; IP(A;)], we obtain

n/2 n
IP(disconnected graph) < 1— p)k(n=k),
( graph) < k; <k>( p)

k
@ Using Stirling's formula k! ~ (g) , which implies (}) < (Z,;k
preceding relation and some (ugly) algebra, we obtain ’

in the

IP(disconnected graph) — 0,

completing the proof.
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Phase Transitions

Figure: Emergence of connectedness: a random network on 50 nodes with

p = 0.10.
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Giant Component

@ We have shown that when p(n) << Iogrgn)’ the Erdds-Renyi graph is
disconnected with high probability.

@ In cases for which the network is not connected, the component
structure is of interest.

@ We have argued that in this regime the expected number of isolated
nodes goes to infinity. This suggests that the Erdos-Renyi graph
should have an arbitrarily large number of components.

@ We will next argue that the threshold p(n) = % plays an important
role in the component structure of the graph.

e For A < 1, all components of the graph are “small”.
e For A > 1, the graph has a unique giant component, i.e., a component
that contains a constant fraction of the nodes.
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Emergence of the Giant Component—1

@ We will analyze the component structure in the vicinity of p(n) = % using a

branching process approximation.

o We assume p(n) = 4.

o Let B(n, %) denote a binomial random variable with n trials and success
probability %

o Consider starting from an arbitrary node (node 1 without loss of generality),
and exploring the graph.

(a) Erdos-Renyi graph process. (b) Branching Process Approx.
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Emergence of the Giant Component—2

@ We first consider the case when A < 1.

@ Let ZkG and ZE denote the number of individuals at stage k for the graph
process and the branching process approximation, respectively.

@ In view of the “overcounting” feature of the branching process, we have
78 <zB  forall k.
@ From branching process analysis (see Lecture 3 notes), we have
E[Z7] = K,
(since the expected number of children is given by n x % =A).

@ Let S; denote the number of nodes in the Erdés-Renyi graph connected to
node 1, i.e., the size of the component which contains node 1.

@ Then, we have
1
E[S] =Y E[Zf] < Y E[Zf] =) Ak = =3
k k k
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Emergence of the Giant Component—3

@ The preceding result suggests that for A < 1, the sizes of the components
are “small”.

Theorem

Let p(n) = 2 and assume that A < 1. For all (sufficiently large) a > 0, we have

]P( max |S;| > alog(n)) —0 asn— oo.

1<i<n

Here |S;| is the size of the component that contains node i.

@ This result states that for A < 1, all components are small [in particular they
are of size O(log(n))].

@ Proof is beyond the scope of this course.
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Emergence of the Giant Component—4

@ We next consider the case when A > 1.
o We claim that Z¢ ~ ZF when AK < O(/n).
@ The expected number of conflicts at stage k 4 1 satisfies

/\2
[E[number of conflicts at stage k + 1] < np’E[ZZ] = n—y E[Z2].

@ We assume for large n that Z, is a P0|sson random variable and therefore
var(Zy) = AK. This implies that

E[Z{] = var(Zy) + E[Z4]* = A* + 22K = A%K,

e

@ Combining the preceding two relations, we see that the conflicts become
non-negligible only after AK &~ \/n.



Emergence of the Giant Component—5

@ Hence, there exists some ¢ > 0 such that
IP(there exists a component with size > cy/n nodes) — 1 as
n — oo.
@ Moreover, between any two components of size y/n, the probability of
having a link is given by
: : A n A
IP(there exists at least one link) =1—(1—=)"~1—e ",
n

i.e., it is a positive constant independent of n.

@ This argument can be used to see that components of size < /n
connect to each other, forming a connected component of size gn for
some g > 0, a giant component.
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Size of the Giant Component

@ Form an Erdos-Renyi graph with n — 1 nodes with link formation probability
p(n) =2 A>1

@ Now add a last node, and connect this node to the rest of the graph with
probability p(n).

@ Let g be the fraction of nodes in the giant component of the n — 1 node
network. We can assume that for large n, g is also the fraction of nodes in
the giant component of the n-node network.

@ The probability that node n is not in the giant component is given by
P(node n not in the giant component) =1 — g = p.

@ The probability that node n is not in the giant component is equal to the
probability that none of its neighbors is in the giant component, yielding

o= ;Pdpd = ®(p).

@ Similar to the analysis of branching processes, we can show that this
equation has a fixed point p* € (0,1).
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An Application: Contagion and Diffusion

@ Consider a society of n individuals.
@ A randomly chosen individual is infected with a contagious virus.

@ Assume that the network of interactions in the society is described by an
Erdos-Renyi graph with link probability p.

@ Assume that any individual is immune with a probability 7.

@ We would like to find the expected size of the epidemic as a fraction of the
whole society.

@ The spread of disease can be modeled as:

o Generate an Erdos-Renyi graph with n nodes and link probability p.
o Delete 7tn of the nodes uniformly at random.
o lIdentify the component that the initially infected individual lies in.

@ We can equivalently examine a graph with (1 — 77)n nodes with link
probability p.



An Application: Contagion and Diffusion

@ We consider 3 cases:

@ p(l—mn< 1

log(n)
. .

[E[size of epidemic as a fraction of the society] <

@ 1< p(l—m)n<log((l—rm)n):

[E[size of epidemic as a fraction of the society]

_ ga(l—m)n+ (1 q)log((1 — m)n))

~ q*(1—m),

where g denotes the fraction of nodes in the giant component of the graph
with (1 — 71)n nodes, ie., g=1— e 91-m)np,

o o> bz

[E[size of epidemic as a fraction of the society] = (1 — 7).
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