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Networks: Lecture 7 

Outline 

Navigation (or decentralized search) in networks
 
Web search
 

Hubs and authorities: HITS algorithm 
PageRank algorithm 

Reading: 

EK, Chapter 20.3-20.6 (navigation)
 

EK, Chapter 14 (web search)
 

(Optional reading:) “The Small-World Phenomenon: An Algorithmic
 
Perspective,” by Jon Kleinberg, in Proc. of ACM Symposium on
 
Theory of Computing, pp./ 163-170, 2000.
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Networks: Lecture 7 

Introduction 

We have studied random graph models of network structure. 

Static random graph models (Erdös-Renyi model, configuration model, 
small-world model) 
Dynamic random graph models (preferential attachment model) 

In the next two lectures, we will study processes taking place on networks. 
In particular, we will focus on: 

Navigation or decentralized search in networks 
Web search: ranking web pages 
Spread of epidemics 
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Networks: Lecture 7 

Decentralized Search
 

Recall Milgram’s small-world experiment, where the goal was to find short 
chains of acquaintances (short paths) linking arbitrary pairs of people in the 
US. 

A source person in Nebraska is asked to deliver a letter to a target 
person in Massachusetts. 
This will be done through a chain where each person forwards the 
letter to someone he knows on a first-name basis. 
Over many trials, the average number of intermediate steps in 
successful chains was found to lie between 5 and 6, leading to six 
degrees of separation principle. 

Milgram’s experiment has two fundamentally surprising discoveries. 

First is that such short paths exist in networks of acquaintances. 

The small-world model proposed by Watts and Strogatz (WS) was 
aimed at capturing two fundamental properties of networks: short 
paths and high clustering. 
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Networks: Lecture 7 

Decentralized Search
 

Second, people are able to find the short paths to the designated target with 
only local information about the network. 

If everybody knows the global network structure or if we can “flood the 
network” (i.e., everyone will send the letter to all their friends), we 
would be able to find the short paths efficiently. 
With local information, even if the social network has short paths, it is 
not clear that such decentralized search will be able to find them 
efficiently. 
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Image by MIT OpenCourseWare. Adapted from Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: 
Reasoning about a Highly Connected World. New York, NY: Cambridge University Press, 2010. ISBN: 9780521195331. 

Figure: In myopic search, the current message-holder chooses the contact 
that is closest to the target and forwards the message to it. 
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Networks: Lecture 7 

A Model for Decentralized Search—1
 
Kleinberg introduces a simple framework that encapsulates the paradigm of
 
WS – rich in local connections with a few long range links.
 

The starting point is an n × n two-dimensional grid with directed edges
 
(instead of an undirected ring).
 

The nodes are identified with the lattice points, i.e., a node v is identified
 
with the lattice point (i , j) with i , j ∈ {1, . . . , n}.
 
For any two nodes v and w , we define the distance between them d(v , w ) as
 
the number of grid steps between them, d((i , j), (k, l)) = |k − i | + |l − j |.
 
Each node is connected to its 4 local neighbors directly – his local contacts.
 

Image by MIT OpenCourseWare. Adapted from 
Easley, David, and Jon Kleinberg. Networks, 
Crowds, and Markets: Reasoning about a Highly 
Connected World. New York, NY: Cambridge 
University Press, 2010. ISBN: 9780521195331. 

Each node also has a random edge to another node – his long range contact.
 

Figure: A grid network with n = 6 and the contacts of a node u. 
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Networks: Lecture 7 

A Model for Decentralized Search—2 

The model has a parameter that controls the “scales spanned by the 
long-range weak ties.” 

The random edge is generated in a way that decays with distance, controlled 
by a clustering exponent α: In generating a random edge out of v , we have 
this edge link to w with probability proportional to d(v , w )−α . 

When α = 0, we have the uniform distribution over long-range contacts 
– the distribution used in the model of WS. 
As α increases, the long-range contact of a node becomes more 
clustered in its vicinity on the grid. 

Image by MIT OpenCourseWare. Adapted from 
Easley, David, and Jon Kleinberg. Networks, 
Crowds, and Markets: Reasoning about a Highly 
Connected World. New York, NY: Cambridge 
University Press, 2010. ISBN: 9780521195331. 

Figure: (left) Small clustering exponent, (right) large clustering exponent 
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Networks: Lecture 7 

Decentralized Search in this Model
 

We evaluate different search procedures according to their expected delivery 
time– the expected number of steps required to reach the target (where the 
expectation is over a randomly generated set of long-range contacts and 
randomly chosen starting and target nodes). 

Given this set-up, we will prove that decentralized search in WS model will 
necessarily require a large number of steps to reach the target (much larger 
than the true length of the shortest path). 

As a model, WS network is effective in capturing clustering and 
existence of short paths, but not the ability of people to actually find 
those paths. 
The problem here is that the weak ties that make the world small are 
“too random” in this model. 

The parameter α captures a tradeoff between how uniform the random links 
are. 

Question: Is there an optimal α (or network structure) that allows for rapid 
decentralized search? 
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Networks: Lecture 7 

Efficiency of Decentralized Search 

Theorem (Kleinberg 2000) 

Assume that each node only knows his set of local contacts, the location of his 
long-range contact, and the location of the target (crucially, he does not know 
the long-range contacts of the subsequent nodes). Then: 

(a)	 For 0 ≤ α < 2, the expected delivery time of any decentralized algorithm is 
at least βαn

(2−α)/3 for some constant βα. 

(b)	 For α = 2, there is a decentralized algorithm so that the expected delivery 
time is at most β2(log (n))2 for some constant β2. 

(c)	 For 2 < α < 3, the expected delivery time of any decentralized algorithm is 
at least βαn

(α−2) for some constant βα. 

Decentralized search with α = 2 requires time that grows like a polynomial 
in log(n), while any other exponent requires time that grows like a 
polynomial in n – exponentially worse. 
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Networks: Lecture 7 

Proof Idea for α = 0 

The basic idea is depicted in the figure below: We randomly pick a target 
node in the grid and consider the (square) box around t of side length n . 

With high probability, the source node lies outside the box. 

Because long range contacts are created uniformly at random (since α = 0), 
the probability that any one node has a long range contact inside the box is 

n4/3 −2/3given by the size of the box divided by n2, i.e., 2 = n . 
n 

Therefore, any decentralized search algorithm will need at least n2/3 steps in 
expectation to find a node with a long-range contact in the box.
 

Moreover, as long as it doesn’t find a long range link leading into the box, it
 
cannot reach the target in less than n2/3 steps (using only local contacts).
 

This shows that the expected time for any decentralized search algorithm
 
must take at least n2/3 steps to reach the target node.
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Networks: Lecture 7 

Proof Idea for 0 ≤ α < 2
 

We use a similar construction for this range: we consider a (square) box 
(2−α)

around the target with side length nγ, where γ ≡ .3 

Recall that a node v forms a long-range link with node w with probability 
proportional to d(v , w )−α . Here, the constant of proportionality is 1/Z 
with Z = ∑w d(v , w )−α . 

Note that in the 2-dimensional grid, a node has ≈ d neighbors at distance d 
from itself. This implies that 

n 
2−α 3γZ = ∑ d .d−α ≈ n = n , 

d=1 

where the last relation follows using an integral approximation. 

Hence, the probability that any one node has a long range contact inside the 
nbox satisfies ≤ 

2γ 
= n−γ (since there are n2γ nodes inside the box) 

n3γ 

This shows that any decentralized search algorithm will need at least 
(2−α) 

nγ = n 3 steps in expectation to find a node with a long-range contact in 
the box. 
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Networks: Lecture 7 

Proof Idea for α = 2 

We again first compute the proportionality constant Z : 
n n1 1 ≈ log(n).∑
 ∑
Z =
 d =
 

d2 d
d 1 d 1= = 

(where the last relation follows by an integral approximation). 

Instead of picking an “impenetrable box” around the target, we show that it 
is easy to enter smaller and smaller sets centered around the target node. 

We consider a node at a distance 2s from the target and compute the time 
it takes to halve this distance (i.e., get into a box of size s). 
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Networks: Lecture 7 

Proof Idea for α = 2 (Continued) 

The probability of having a long range contact in the box of size s is 
2 1 1 1
≥ s ≈

log(n) (2s)2 log(n) .
 

Hence, it takes in expectation log(n) time steps to halve the distance. Since 
we can halve the distance at most log(n) times, this leads to an algorithm 
that takes (log(n))2 steps to reach the target in expectation. 
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Networks: Lecture 7 

Proof Idea for 2 < α < 3 

Computing the proportionality constant Z in this case yields Z = constant 
(independent of n) for large n. 

The expected length of a typical long-range contact is given by 

E[length of a typical long range contact] = 
1 
Z 

n 

∑ 
d=1 

1 3−αd .d . ≈ n . 
dα 

3−α α−2Hence, the expected time is at least n/n = n . 
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Networks: Lecture 7 

Web Search – Link Analysis 

When you go to Google and type “MIT”, the first result it displays is 
web.mit.edu, the home page of MIT University. 

How does Google know that this was the best answer? 

This is a problem of information retrieval: since 1960’s, automated 
information retrieval systems were designed to search data repositories in 
response to keyword queries. 

Classical approach has been based on “textual analysis”, i.e., look at 
each page separately without regard to the link structure. 

In the example of MIT home page, what makes it stand out is the number 
of links that “point to it”, which can be used to assess the authority of a 
page on the topic: 

First, collect a large sample of pages that are relevant to the query as 
determined by a classical, text-only, information retrieval approach. 
Pick the webpage that receives the greatest number of in-links (score) 
from these pages. 

15 
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Networks: Lecture 7 

Link Structure–1
 
For a different query, say “newspaper”, the “most important page” seems 
less obvious, i.e., you get a high score for a mix of prominent newspapers, as 
well as for pages that are going to receive many links no matter what the 

Reasoning about a Highly Connected World. New York, NY: Cambridge University Press, 2010. ISBN: 9780521195331. 

query is (such as Yahoo, Facebook, Amazon). 

Image by MIT OpenCourseWare. Adapted from Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: 

Figure: Counting in-links to pages for the query “newspapers”. 
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Image by MIT OpenCourseWare. Adapted from Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: 
Reasoning about a Highly Connected World. New York, NY: Cambridge University Press, 2010. ISBN: 9780521195331. 



   

  

              
 

         
         

          

               
              

       

                   
     

       

       
 

       
 

 

Networks: Lecture 7 

Hubs and Authorities–1
 

This suggests a ranking procedure which is defined in terms of two kinds of 
nodes: 

Authorities: The prominent highly endorsed answers to the queries 
(nodes that are pointed to by highly ranked nodes) 
Hubs: High-value lists (nodes that point to highly ranked nodes) 

For each page p, we are trying to estimate its value as a potential authority 
and as a potential hub, so we assign it to numerical values b(p) (for 
authority weight) and h(p) (for hub weight). 

Let A denote the n × n adjacency matrix, i.e., Aij = 1 if there is a link from 
node i to node j . 

The authority and hub weights then satisfy: 

h(i) = ∑ Aij b(j) for all i , 
j 

b(j) = ∑ Aij h(i) for all j . 
i 
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Networks: Lecture 7 

Hubs and Authorities–2 

This can be written in matrix-vector notation as: 

h = Ab, bT = hT A or b = AT h, 

where bT (or AT ) denotes the transpose of vector b (or matrix A). 

This yields an iterative procedure in which at each time k ≥ 0, the authority 
and hub weights are updated according to: 

bk+1 = (AT A)bk , 

hk+1 = (AAT )hk . 

Using an eigenvector decomposition, one can show that this iteration 
converges to a limit point related to the eigenvectors of the matrices AT A 
and AAT . 

Implementation of this algorithm requires “global knowledge,” therefore it is 
implemented in a “query-dependent manner”. 
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Networks: Lecture 7 

Page Rank–1 

Multi-billion query-independent idea of Google.
 

Each node (or page) is important if it is cited by other important pages.
 

Each node j has a single weight (PageRank value) w (j) which is a function
 
of the weights of his (incoming) neighbors:
 

w (i) 
w (j) = ∑ Aij ,dout (i)i 

where A is the adjacency matrix, dout (i) is the out-degree of node i (used 
to dilute the importance of node i if he is linked to many nodes). 

We can express this in vector-matrix notation as: 

T w = w T P, 

Aijwhere Pij = dout (i ) 
(note that ∑j Pij = 1). 
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Networks: Lecture 7 

This defines a random walk on the nodes of the network: 

A walker chooses a starting node uniformly at random. Then, in each 
step, the walker follows an outgoing link selected uniformly at random 
from its current node, and it moves to the node that this link points to. 

The PageRank of a node i is the limiting probability that a random walk on
 
the network will end up at i as we run the walk for larger number of steps.
 

Difficulty with PageRank: Dangling ends which may cause the random walk
 
to get trapped.
 

To fix this, we allow the random walk at each step with probability (1 − s)
 
to jump to a node chosen uniformly at random (with probability s, as
 
before, it follows a random outgoing link).
 

This yields the following iteration for the PageRank algorithm: at step k, 

+1 

Page Rank–2 

T
k 

(1 − s) 
w = sw Tk P + T e , where e T = [1, . . . , 1]. 

n 

This is the version of PageRank used in practice (with many other tricks) 
with s usually between 0.8 and 0.9. 
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