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Networks: Lecture 8 

Outline 

Spread of epidemics in networks 
Models of diffusion without network structure 

Bass model 

Models of diffusion that explicitly incorporate network structure 
Diffusion with immune nodes 
SIR model (susceptible, infected, removed) 
SIS model (susceptible, infected, susceptible) 

Reading: 

Jackson, Chapter 7, Sections 7.1,7.2. 

EK, Chapter 21. 
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Introduction


The study of epidemic disease has always been a topic where biological

issues mix with the social ones.


The patterns by which epidemics spread through a society is determined not 
just by the properties of the pathogen carrying it (including its 
contagiousness, the length of its infectious period, and severity), but also by 
the network structure within the population. 

Opportunities for a disease to spread from one person to another is 
given by the contact network, indicating who has contact with whom 
on a regular basis. 

We are interested in the following questions: 

Under what conditions will an initial outbreak spread to a nontrivial 
portion of the population? 
What percentage of the population will eventually become infected? 
What is the effect of immunization policies? 

The problem is relevant not only to disease transmission, but also to 
diffusion through a network of information, opinions, and adoption of new 
technologies or behaviors. 
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Bass Model–1 

An early model of diffusion is the Bass model. 

Although it does not capture any explicit social network structure, it still 
incorporates imitation. 

The model is built on two parameters: p captures the rate at which agents 
spontaneously get infections (in response to outside stimuli); and q captures 
the rate at which agents get infected through others (secondary infections). 

In the context of adoption of technologies, p can be interpreted as the 
rate of innovation and q as the rate of imitation due to social effects. 

Consider a discrete-time model and let F (t) be the fraction of agents 
infected at time t. 

The Bass model is described by the difference equation:


F (t) = F (t − 1) + p(1 − F (t − 1)) + q(1 − F (t − 1))F (t − 1).


The term p(1 − F (t − 1)) is the infection rate times the fraction of 
uninfected agents. The term q(1 − F (t − 1))F (t − 1) is the contagion rate 
times the frequency of encounters between healthy and infected agents. 
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Bass Model–2 

A continuous time version of this model is described by 

d F (t) 
= (p + qF (t))(1 − F (t)),

dt 

with F (0) = 0. 

This is a nonlinear differential equation, but admits a closed form solution 
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Note that the levels of p and q scale time, the ratio of q to p determines the 
overall shape of the curve. 
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Bass model–3


Figure: Diffusion curves: left is for p < q and right is for p > q. 
Many empirical studies have found diffusion patterns that are S-shaped (e.g. 
adoption of hybrid corn seeds among Iowa farmers). 

Let us interpret this in the context of adoption of new technologies. 

First adopters are almost entirely those who adopt from their spontaneous 
innovation (when F (t) is close to 0, Ḟ (t) = p). 

As process progresses, there are more agents to be imitated leading to an 
increase in the rate of diffusion, which eventually slows down since there are 
fewer agents to do the imitating. 
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Diffusion in a Network with Immune Nodes


The problems of modeling contagion or the spread of information through a 
society involve determining “when paths exist that connect different nodes”, 
i.e., understanding the component structure. 

Let us consider the following problem. 

There is a society of n individuals. Initially one of them is infected with a 
disease. Each individual is immune with probability π. 

The question of whether the disease can spread to a nontrivial fraction of 
the population amounts to whether the infected individual lies in a “giant 
component” of the network with the immune nodes removed. 

We have studied this problem when the underlying network is an

Erdös-Renyi network.


We will now generalize to arbitrary degree distributions. 
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Diffusion with General Degree Distributions 

Recall that the degree distribution of a neighboring node is given by 

P̃(d) = 
dP(d) 

. �d� 
From this, we showed that the expected number of children is given by 

Ẽ[number of children] = 
�d2� − �d� 

. �d� 

Hence the expected number of infected children (basic reproductive number 
of the disease) is 

λ ≡ (1 − π) 
�d2� − �d� 

. �d� 
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Diffusion with General Degree Distributions 

Recall the branching process analysis:

If λ < 1, then with probability one, the disease dies out after a finite

number of stages. 
If 1, then with positive probability, the disease persists by infecting a λ > 

This yields the following threshold for the probability of immune : a giant π

i.e., if the fraction of immune nodes is below this threshold. 
¯

large portion of the population. 

component will emerge if 
π < 

�d2� − 2�d� 
, �d2� − �d� 

d), this leads to For example, for a regular network (each node with degree
d̄ − 2 
¯π = . 
d − 1 

d = 2, giant component never emerges. ¯If
d = 3, giant component emerges if < half the population is immune. ¯If

For the Erdös-Renyi graph, we have �d2� = �d�2 + �d� and �d� = (n − 1)p.


This yields the threshold π = 1 − (n−
1
1)p or p(n − 1)(1 − π) = 1, as before.
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Diffusion with General Degree Distributions 

For a power-law degree distribution (or a scale-free network) with 
P(d) ∼ d−γ , γ < 3, we have that the �d2� is diverging in n. 

Therefore, the contagion threshold for this case is π = 1, i.e., all nodes have 
to be immune before the giant component of susceptible nodes disappears. 

Under such degree distributions, there are enough very high degree 
nodes that many nodes are connected to and the network has a giant 
component even when many nodes are eliminated uniformly at random. 

Immunized nodes can be viewed as nodes that are removed from the system. 

We have seen that Internet has a power-law distribution with exponent 
∼ 2.1 − 2.7. The preceding shows that Internet is robust: remove 98% of 
the nodes, you still have connectivity. 

However, a targeted removal of highest-degree nodes implies a much lower 
threshold: 

If γ = 2.5, then π = 0.056!! (removing 5% of the nodes disconnects 
the network). 

Leads to the catchy phrase “Internet is robust, yet fragile.” 
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Size of the Infected Population 

Compute size of giant component, gives the size of infected population. 

Consider a node and the event that this node is in the giant component, or 
equivalently the event that the branching process does not die out. 

Let q̃ denote the probability that the branching process does not die out 
starting from a neighboring node: 

∞

∑1 − q̃ = π + (1 − π) P̃(d)(1 − q̃)d−1 . 
d=1 

∞

∑ 

Let q denote the probability that the branching process does not die out: 

P(d)(1 − q̃)d1 − q = . 
d=0 

The size of the giant component is given by qn. 
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SIR Model–1 

In the SIR model, a node can be in one of 3 states: 

Susceptible: Before the node has caught the disease, it is susceptible to 
infection from the neighbors. 
Infected: Once the node has caught the disease, it is infectious and has 
some probability of infecting each of its susceptible neighbors. 
Removed: After the disease has run its course, the node either dies or 
becomes completely immune (no longer susceptible). 

A good model for diseases such as chickenpox. 

Assume individuals are connected through a network generated under the 
configuration model with degree distribution P(d). 

Suppose that the infection process is such that the probability that an 
infected node will infect a susceptible neighbor before the infected node is 
removed can be described by the probability of transmission t. 

Assume that the infection process is independent across links between 
susceptible and infected nodes. 

The independence assumption is clearly violated in many cases. 
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SIR Model–2


To analyze the reach of infection, we can remove links (in an independent 
and identical manner) with probability 1 − t, and compute the resulting 
component size. 

The analysis then is analogous to the analysis of diffusion with immune

nodes (with t in place of 1 − π).


How do we determine the transmission probability t? 

Model 1:


An infected node is removed within 1 time step (deterministic).

A node infects each of its susceptible neighbor i independently within

time Ti that is exponentially distributed with parameter β.

We have t = P(Ti ≤ 1) = 1 − e−β .


Model 2:


An infected node is removed within time T ∼ exp(γ).

A node infects each of its susceptible neighbor i independently within

time Ti ∼ exp(β).

We have t = P(Ti ≤ T ) = β 

β+γ . 
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SIS Model–1


In the SIS model, susceptible nodes can become infected, and then recover in 
such a way that they become susceptible again (rather than being removed). 

Models diseases such as certain variations of the common cold. 

Consider a degree-based random meeting model: nodes interact randomly 
according to their degree di . 

Let P(d) be the degree distribution in the society. 

The probability that a meeting of node i is with a degree d node is

P(d)d


. �d� 
It is essential to keep track of nodes degrees since nodes with different

degrees tend to have different infection rates.


Let ρd (t) denote the fraction of nodes of degree d infected at time t. 

Let θ(t) denote the probability that a given meeting is with an infected 
individual. Then: ∑ P(d)ρd (t)d 

θ(t) = . �d� 
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SIS Model–2


Let ν denote the transmission rate of infection and δ denote the recovery 
rate of an infected individual. 

We assume that the probability that a susceptible agent with degree d

becomes infected in a period [t, t + �) is �νθ(t)d .


Using a mean field analysis, we can write the evolution of ρd (t): 

ρ̇d (t) = (1 − ρd (t))νθ(t)d − ρd (t)δ. 

The term (1 − ρd (t))νθ(t)d represents the fraction of nodes of degree d 
that were susceptible and become infected and ρd (t)δ represents the 
fraction that recover to become susceptible again. 

Using this, we can characterize the steady state. Let θ(t) θ and

ρd (t) ρd , and λ = ν/δ: 

→

→ 

λθd 
ρd = , and therefore, 

λθd + 1 

P(d)λθd2 
θ = ∑ �d�(λθd + 1) 

. 
d 
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Nonzero Steady State Infection Rate 

θ = 0 is always a solution: if nobody is infected, the system stays that way. 

We next analyze when the steady state has a solution with θ > 0. 

d̄ . Then:Assume the degree distribution is regular, all nodes have degree

d̄λθ 
θ = 

d̄λθ + 1
, 

1 
d̄ 

d̄ > 1/λ = δ/ν.implying a solution θ = 1 − , which is positive only if
λ 

If the number of meetings is sufficiently large compared to the relative 
recovery/infection rate, then the infection can be sustained. 

It can be shown that for power-law degree distributions, there is always a 
positive solution. 
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Nonzero Steady State Infection Rate 

In general, let H(θ) be 
P(d)λθd2 

H(θ) = ∑ �d�(λθd + 1) 
. 

d 

We have H(0) = 0 and H(θ) is increasing and strictly concave in θ. 

Thus, for H to have a nonzero fixed point, we must have H �(0) > 1. 

Note that H �(0) = λ ��
d
d

2

�
� . 

Hence the condition for positive steady state infection is 

λ >	
�d� 

. �d2� 
For regular graphs, the threshold is λ > 1/d̄ , as before. 

For power law distributions (with γ < 3), �d2� is divergent, hence the above 
equation is satisfied for any positive λ. 

Intuition: Individuals with high-degree nodes serve as conduits for 
infection. Even very low infection rates can lead them to become 
infected and infect many others. 
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