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Reading: 

Osborne, Chapters 3-5. 
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Networks: Lecture 10 Nash Equilibrium 

Pure Strategy Nash Equilibrium 

Definition 

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic 
game �I, (Si )i∈I , (ui )i∈I � is a strategy profile s∗ ∈ S such that for all i ∈ I 

ui (si 
∗, s∗ −i ) for all si ∈ Si .−i ) ≥ ui (si , s

∗ 

Why is this a “reasonable” notion? 

No player can profitably deviate given the strategies of the other 
players. Thus in Nash equilibrium, “best response correspondences 
intersect”. 

Put differently, the conjectures of the players are consistent: each 
player i chooses si 

∗ expecting all other players to choose s∗ , and each −i 
player’s conjecture is verified in a Nash equilibrium. 
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Networks: Lecture 10 Examples 

Examples: Bertrand Competition 

An alternative to the Cournot model is the Bertrand model of 
oligopoly competition. 

In the Cournot model, firms choose quantities. In practice, choosing 
prices may be more reasonable. 

What happens if two producers of a homogeneous good charge 
different prices? Reasonable answer: everybody will purchase from 
the lower price firm. 

In this light, suppose that the demand function of the industry is 
given by Q (p) (so that at price p, consumers will purchase a total of 
Q (p) units). 

Suppose that two firms compete in this industry and they both have 
marginal cost equal to c > 0 (and can produce as many units as they 
wish at that marginal costs). 
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Networks: Lecture 10 Examples 

Bertrand Competition (continued) 

Then the profit function of firm i can be written as ⎧ ⎨ Q (pi ) (pi − c) if p−i > pi 

πi (pi , p−i ) = ⎩ 
1
2 Q (pi ) (pi − c) if p−i = pi 

0 if p−i < pi 

Actually, the middle row is arbitrary, given by some ad hoc 
“tiebreaking” rule. Imposing such tie-breaking rules is often not 
“kosher” as the homework will show. 

Proposition 

In the two-player Bertrand game there exists a unique Nash equilibrium 
given by p1 = p2 = c. 
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Networks: Lecture 10 Examples 

Bertrand Competition (continued) 

Proof: Method of “finding a profitable deviation”. 

Can p1 ≥ c > p2 be a Nash equilibrium? No because firm 2 is losing 
money and can increase profits by raising its price. 

Can p1 = p2 > c be a Nash equilibrium? No because either firm 
would have a profitable deviation, which would be to reduce their 
price by some small amount (from p1 to p1 − ε). 

Can p1 > p2 > c be a Nash equilibrium? No because firm 1 would 
have a profitable deviation, to reduce its price to p2 − ε. 

Can p1 > p2 = c be a Nash equilibrium? No because firm 2 would 
have a profitable deviation, to increase its price to p1 − ε. 

Can p1 = p2 = c be a Nash equilibrium? Yes, because no profitable 
deviations. Both firms are making zero profits, and any deviation 
would lead to negative or zero profits. 
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Networks: Lecture 10 Examples 

Examples: Second Price Auction 

Second Price Auction (with Complete Information) The second price

auction game is specified as follows:

An object to be assigned to a player in {1, .., n}.

Each player has her own valuation of the object. Player i ’s valuation

of the object is denoted vi . We further assume that v1 > v2 > ... > 0.

Note that for now, we assume that everybody knows all the valuations

v1, . . . , vn, i.e., this is a complete information game. We will analyze

the incomplete information version of this game in later lectures.


The assignment process is described as follows:

The players simultaneously submit bids, b1, .., bn.

The object is given to the player with the highest bid (or to a random

player among the ones bidding the highest value).

The winner pays the second highest bid.

The utility function for each of the players is as follows: the winner

receives her valuation of the object minus the price she pays, i.e.,

vi − bj ; everyone else receives 0.
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Networks: Lecture 10 Examples 

Second Price Auction (continued) 

Proposition 

In the second price auction, truthful bidding, i.e., bi = vi for all i , is a 
Nash equilibrium. 

Proof: We want to show that the strategy profile (b1, .., bn) = (v1, .., vn) 
is a Nash Equilibrium—a truthful equilibrium. 

First note that if indeed everyone plays according to that strategy, 
then player 1 receives the object and pays a price v2. 
This means that her payoff will be v1 − v2 > 0, and all other payoffs 
will be 0. Now, player 1 has no incentive to deviate, since her utility 
can only decrease. 
Likewise, for all other players vi = v1, it is the case that in order for vi 

to change her payoff from 0 she needs to bid more than v1, in which 
case her payoff will be vi − v1 < 0. 
Thus no incentive to deviate from for any player. 
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Networks: Lecture 10 Examples 

Second Price Auction (continued) 

Are There Other Nash Equilibria? In fact, there are also unreasonable 
Nash equilibria in second price auctions. 

We show that the strategy (v1, 0, 0, ..., 0) is also a Nash Equilibrium. 

As before, player 1 will receive the object, and will have a payoff of 
v1 − 0 = v1. Using the same argument as before we conclude that 
none of the players have an incentive to deviate, and the strategy is 
thus a Nash Equilibrium. 

It can be verified the strategy (v2, v1, 0, 0, ..., 0) is also a Nash 
Equilibrium. 

Why? 
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Networks: Lecture 10 Examples 

Second Price Auction (continued) 

Nevertheless, the truthful equilibrium, where , bi = vi , is the Weakly 
Dominant Nash Equilibrium 
In particular, truthful bidding, bi = vi , weakly dominates all other 
strategies. 
Consider the following picture proof where B∗ represents the 
maximum of all bids excluding player i ’s bid, i.e. 

B∗ = max bj , 
j=i 

and v∗ is player i’s valuation and the vertical axis is utility. 

B*v*

ui(bi)

bi = v*

B*v* B*
v*

bi < v* bi > v*

ui(bi) ui(bi)

bi bi
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Networks: Lecture 10 Examples 

Second Price Auction (continued) 

The first graph shows the payoff for bidding one’s valuation. In the 
second graph, which represents the case when a player bids lower 
than their valuation, notice that whenever bi ≤ B∗ ≤ v∗, player i 
receives utility 0 because she loses the auction to whoever bid B∗. 

If she would have bid her valuation, she would have positive utility in 
this region (as depicted in the first graph). 

Similar analysis is made for the case when a player bids more than 
their valuation. 

An immediate implication of this analysis is that other equilibria 
involve the play of weakly dominated strategies. 
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Networks: Lecture 10 Mixed Strategies 

Nonexistence of Pure Strategy Nash Equilibria 

Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

No pure Nash equilibrium.


How would you play this game?
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Networks: Lecture 10 Mixed Strategies 

Nonexistence of Pure Strategy Nash Equilibria 

Example: The Penalty Kick Game. 

penalty taker \ goalie left right 
left (−1, 1) (1, −1) 
right (1, −1) (−1, 1) 

No pure Nash equilibrium. 

How would you play this game if you were the penalty taker? 

Suppose you always show up left. 
Would this be a “good strategy”? 

Empirical and experimental evidence suggests that most penalty 
takers “randomize” mixed strategies. →
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Networks: Lecture 10 Mixed Strategy Equilibrium 

Mixed Strategies 

Let Σi denote the set of probability measures over the pure strategy 
(action) set Si . 

For example, if there are two actions, Si can be thought of simply as a 
number between 0 and 1, designating the probability that the first 
action will be played. 

We use σi ∈ Σi to denote the mixed strategy of player i , and 
σ ∈ Σ = i∈I Σi to denote a mixed strategy profile.


Note that this implicitly assumes that players randomize

independently.


We similarly define σ−i ∈ Σ−i = j=� i Σj . 

Following von Neumann-Morgenstern expected utility theory, we 
extend the payoff functions ui from S to Σ by 

ui (σ) = ui (s)dσ(s). 
S 
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Networks: Lecture 10 Mixed Strategy Equilibrium 

Mixed Strategy Nash Equilibrium 

Definition 

(Mixed Nash Equilibrium): A mixed strategy profile σ∗ is a (mixed 
strategy) Nash Equilibrium if for each player i , 

ui (σ
∗ 
i , σ

∗
−i ) for all σi ∈ Σi .−i ) ≥ ui (σi , σ
∗ 

Proposition 

Let G = �I, (Si )i∈I , (ui )i∈I � be a finite strategic form game. Then, 
σ∗ ∈ Σ is a Nash equilibrium if and only if for each player i ∈ I, every 
pure strategy in the support of σ∗ 

i is a best response to σ∗ 
−i . 

Proof idea: If a mixed strategy profile is putting positive probability on a 
strategy that is not a best response, then shifting that probability to other 
strategies would improve expected utility. 
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Networks: Lecture 10 Mixed Strategy Equilibrium 

Mixed Strategy Nash Equilibria (continued) 

It follows that every action in the support of any player’s equilibrium 
mixed strategy yields the same payoff. 

Implication: it is sufficient to check pure strategy deviations, i.e., σ∗ 

is a mixed Nash equilibrium if and only if for all i , 

ui (σ
∗ 
i , σ

∗
−i ) for all si ∈ Si .−i ) ≥ ui (si , σ
∗ 

Note: this characterization result extends to infinite games: σ∗ ∈ Σ 
is a Nash equilibrium if and only if for each player i ∈ I, no action in 
Si yields, given σ∗ , a payoff that exceeds his equilibrium payoff, the −i 
set of actions that yields, given σ∗ , a payoff less than his equilibrium −i 
payoff has σ∗ 

i -measure zero. 
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Networks: Lecture 10 Mixed Strategy Equilibrium 

Examples 

Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

Unique mixed strategy equilibrium where both players randomize with 
probability 1/2 on heads. 

Example: Battle of the Sexes Game. 

Player 1 \ Player 2 ballet football 
ballet (1, 4) (0, 0) 

football (0, 0) (4, 1) 

This game has two pure Nash equilibria and a mixed Nash equilibrium

(4
5 , 5

1 ), (1
5 , 5

4 ) . 
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Networks: Lecture 10 Existence Results 

Weierstrass’s Theorem


Theorem 

(Weierstrass) Let A be a nonempty compact subset of a finite 
dimensional Euclidean space and let f : A R be a continuous function. →
Then there exists an optimal solution to the optimization problem 

minimize f (x) 

subject to x ∈ A. 
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Networks: Lecture 10 Existence Results 

Kakutani’s Fixed Point Theorem


Theorem 

(Kakutani) Let f : A � A be a correspondence, with x ∈ A �→ f (x) ⊂ A, 
satisfying the following conditions: 

A is a compact, convex, and non-empty subset of a finite dimensional

Euclidean space.


f (x) is non-empty for all x ∈ A.


f (x) is a convex-valued correspondence: for all x ∈ A, f (x) is a

convex set.


f (x) has a closed graph: that is, if {xn , yn} → {x , y} with

yn ∈ f (xn), then y ∈ f (x).


Then, f has a fixed point, that is, there exists some x ∈ A, such that 
x ∈ f (x). 
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Networks: Lecture 10 Existence Results 

Definitions (continued) 

A set in a Euclidean space is compact if and only if it is bounded and 
closed. 
A set S is convex if for any x , y ∈ S and any λ ∈ [0, 1],

λx + (1 − λ)y ∈ S .
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is not convex-valued does not have a 
closed graph

Networks: Lecture 10 Existence Results 

Kakutani’s Fixed Point Theorem—Graphical Illustration
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Networks: Lecture 10 Existence Results 

Nash’s Theorem


Theorem 

(Nash) Every finite game has a mixed strategy Nash equilibrium. 

Implication: matching pennies necessarily has a mixed strategy

equilibrium.


Why is this important? 

Without knowing the existence of an equilibrium, it is difficult (perhaps 
meaningless) to try to understand its properties. 
Armed with this theorem, we also know that every finite game has an 
equilibrium, and thus we can simply try to locate the equilibria. 
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Networks: Lecture 10 Existence Results 

Proof


Recall that σ∗ is a (mixed strategy) Nash Equilibrium if for each

player i ,


ui (σ
∗ 
i , σ

∗
−i ) for all σi ∈ Σi .−i ) ≥ ui (σi , σ
∗ 

Define the best response correspondence for player i Bi : Σ−i � Σi as 

Bi (σ−i ) = σ�i ∈ Σi | ui (σ
�
i , σ−i ) ≥ ui (σi , σ−i ) for all σi ∈ Σi . 

Define the set of best response correspondences as


B (σ) = [Bi (σ−i )]i∈I .


Clearly 
B : Σ � Σ. 
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Networks: Lecture 10 Existence Results 

Proof (continued) 

The idea is to apply Kakutani’s theorem to the best response 
correspondence B : Σ � Σ. We show that B(σ) satisfies the 
conditions of Kakutani’s theorem. 

Σ is compact, convex, and non-empty. 
By definition �


Σ = Σi
� 
i∈I 

where each Σi = {x | xi = 1} is a simplex of dimension |Si | − 1, 
thus each Σi is closed and bounded, and thus compact. Their finite 
product is also compact. 

B(σ) is non-empty. 
By definition,


Bi (σ−i ) = arg max ui (x , σ−i )

x∈Σi 

where Σi is non-empty and compact, and ui is linear in x . Hence, ui is 
continuous, and by Weirstrass’s theorem B(σ) is non-empty. 

24 



Networks: Lecture 10 Existence Results 

Proof (continued) 

3. B(σ) is a convex-valued correspondence. 

Equivalently, B(σ) ⊂ Σ is convex if and only if Bi (σ−i ) is convex for all 
i . Let σ�i , σ

��
i ∈ Bi (σ−i ). 

Then, for all λ ∈ [0, 1] ∈ Bi (σ−i ), we have


ui (σ
�
i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi ,


ui (σ
��
i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi .


The preceding relations imply that for all λ ∈ [0, 1], we have 

λui (σ
�
i , σ−i ) + (1 − λ)ui (σ

��
i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi . 

By the linearity of ui , 

ui (λσ�i + (1 − λ)σ��i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi . 

Therefore, λσ�i + (1 − λ)σ��i ∈ Bi (σ−i ), showing that B(σ) is 
convex-valued. 
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Networks: Lecture 10 Existence Results 

Proof (continued) 

4. B(σ) has a closed graph. 

Supposed to obtain a contradiction, that B(σ) does not have a closed 
graph. 
Then, there exists a sequence (σn , σ̂n) → (σ, σ̂) with σ̂n ∈ B(σn), but 
ˆ ∈ B(σ), i.e., there exists some i such that σ̂i ∈ Bi (σ−i ).σ / /
This implies that there exists some σ�i ∈ Σi and some � > 0 such that 

ui (σ
�
i , σ−i ) > ui (σ̂i , σ−i ) + 3�. 

By the continuity of ui and the fact that σn σ−i , we have for −i →
sufficiently large n, 

ui (σ
�
i , σ

n 
−i ) − �.−i ) ≥ ui (σ

�
i , σ
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Networks: Lecture 10 Existence Results 

Proof (continued) 

[step 4 continued] Combining the preceding two relations, we obtain 

ui (σ
�
i , σ

n 
−i ) > ui (σ̂i , σ−i ) + 2� ≥ ui (σ̂i

n, σn 
−i ) + �, 

where the second relation follows from the continuity of ui . This 
contradicts the assumption that σ̂n ∈ Bi (σ

n ), and completes the i −i 
proof. 

The existence of the fixed point then follows from Kakutani’s theorem. 

If σ∗ ∈ B (σ∗), then by definition σ∗ is a mixed strategy equilibrium. 
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