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Motivation 

Do people play Nash equilibrium? 

In class, in the context of the k-beauty game, we saw that even very 
smart MIT students do not play the unique Nash equilibrium (or the 
unique strategy profile surviving iterated elimination of strictly 
dominated strategies). 

Why? 

Either because in new situations, it is often quite complex to work out 
what is “best”. 
Or more likely, because, again in new situations, individuals are 
uncertain about how others will play the game. 

If we played the k-beauty game several more times, behavior would 
have approached or in fact reached the Nash equilibrium prediction. 
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Motivation (continued) 

This reasoning suggests the following: 

Perhaps people behave using simple rules of thumb; these are 
somewhat “myopic,” in the sense that they do not involve full 
computation of optimal strategies for others and for oneself. 

But they are also “flexible” rules of thumb in the sense that they 
adapt and respond to situations, including to the (actual) behavior of 
other players. 

What are the implications of this type of adaptive behavior? 

Two different and complementary approaches: 

Evolutionary game theory.

Learning in games.
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Evolution and Game Theory 

The theory of evolution goes back to Darwin’s classic, The Origins of 
Species (and to Wallace). 

Darwin focused mostly on evolution and adaptation of an organism to 
the environment in which it was situated. But in The Descent of 
Man, in the context of sexual selection, he anticipated many of the 
ideas of evolutionary game theory. 

Evolutionary game theory was introduced by John Maynard Smith in 
Evolution and the Theory of Games, and in his seminal papers, 
Maynard Smith (1972) “Game Theory and the Evolution of Fighting” 
and Maynard Smith and Price (1973) “The Logic of Animal Conflict”. 

The theory was formulated for understanding the behavior of animals 
in game-theoretic situations (to a game theorist, all situations). But 
it can equally well be applied to modeling “myopic behavior” for more 
complex organisms—such as humans. 
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Evolution in Strategies 

In its simplest form the story goes like this: each organism is born 
programmed to play a particular strategy. 

The game is the game of life—with payoffs given as fitness. If the 
organism is successful, it has greater fitness and more offspring, also 
programmed to play in the same way. If it is unsuccessful, it likely 
dies without offspring. 

Mutations imply that some of these offspring will randomly play any 
one of the feasible strategies. 

This situation can then be modeled in two different ways:


By defining a concept of equilibrium appropriate for this evolutionary

“competition”. The concept that Maynard Smith proposed is

evolutionary stability.

By defining the dynamics of evolution more explicitly through replicator 
dynamics. 

Note: many other uses of “evolutionary” ideas in economics. 
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The Setting 

Consider a large population of agents (organisms, animals, humans). 

At each instant, each agent is randomly matched with one other 
agent, and they play a symmetric strategic form game. The payoffs of 
the game are their fitness level. 

Each agent is programmed (committed to) to playing a given strategy. 

Strategies that have higher payoffs expand and those that have lower 
payoffs contract. 
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A Reminder and A New Concept 

Definition 

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic 
form game ⟨ℐ, (Si )i∈ℐ , (ui )i∈ℐ ⟩ is a strategy profile s∗ ∈ S such that for all 
i ∈ ℐ 

ui (si 
∗, s∗ −i ) for all si ∈ Si .−i ) ≥ ui (si , s

∗ 

Definition 

(Strict Nash equilibrium) A strict Nash Equilibrium of a strategic form 
game ⟨ℐ, (Si )i∈ℐ , (ui )i∈ℐ ⟩ is a strategy profile s∗ ∈ S such that for all i ∈ ℐ 

ui (si 
∗, s∗ −i ) for all si ∈ Si .−i ) > ui (si , s

∗ 

Clearly, a strict Nash equilibrium may not exist. 
Also, a strict Nash equilibrium is necessarily a pure strategy

equilibrium (why?).
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The Canonical Game


The canonical game used in much of evolutionarily game theory to 
motivate the main ideas is the Hawk-Dove game: 

Player 1/Player 2	 Hawk Dove 
Hawk 

(
1
2 (v − c) , 12 (v − c)

) ( (v , 0) )
Dove (0, v) 2

1 v , 2
1 v

Interpretation: 
There is a resource of value v to be shared. If a player plays “Hawk,” it 
is aggressive and will try to take the whole resource for itself. If the 
other player is playing “Dove,” it will succeed in doing so. If both 
players are playing “Hawk,” then they fight and they share the resource 
but lose c in the process. If they are both playing “Dove,” then they 
just share the resource. 

Interpret the payoffs as corresponding to fitness—e.g., greater

consumption of resources leads to more offspring.
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The Canonical Game (continued) 

Depending on the value of c relative to v , there are different types of 
equilibria. 

If v > c , then there is a unique strict Nash equilibrium, which is 
(Hawk, Hawk). 
If v = c , then there exists a unique Nash equilibrium, (Hawk, Hawk), 
though this is not a strict Nash equilibrium. 
If v < c , then there exists three Nash equilibria: (Hawk, Dove) and 
(Dove, Hawk), which are non-symmetric strict equilibria, and a mixed 
strategy symmetric equilibrium. 
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Evolution in the Hawk-Dove Game


If v > c , then we expect all agents to choose “Hawk”. Those who do 
not will have lower fitness. 

A different way of thinking about the problem: imagine a population 
of agents playing “Dove” in this case. 

Suppose there is a mutation, so that one agent (or a small group of 
agents) starts playing “Hawk”. 

This latter agent and its offspring will invade the population, because 
they will have greater fitness. 

The notion of evolutionarily stable strategies or evolutionary

stability follows from this reasoning.
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Evolutionarily Stable Strategies 

Let us first start with a general definition. For this, let us go back to 
mixed strategies in the strategic form game, except that this is a two 
player, symmetric game, so we write it simply as ⟨S , u⟩. A (possibly 
mixed) strategy is � ∈ Σ. 

Definition 

(Evolutionarily stable strategy I) A strategy �∗ ∈ Σ is evolutionarily 
stable if there exists �̄ > 0 such that for any � =∕ �∗ (naturally with 
� ∈ Σ) and for any � < �̄, we have 

u(�∗, �� + (1 − �) �∗) > u(�, �� + (1 − �) �∗). (Condition I) 

Interpretation: strategy �∗ is evolutionarily stable if it cannot be 
invaded by any � =∕ �∗. I.e., if, starting with a population playing �∗, 
a small fraction � < �̄ of agents play �, then these players do worse 
(have lower fitness) than those playing �∗. 
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Evolutionary Stability: Alternative Definition 

An alternative definition is: 

Definition 

(Evolutionarily stable strategy II) A strategy �∗ ∈ Σ is evolutionarily 
stable if for any � =∕ �∗ (with � ∈ Σ), we have 

u(�∗, �∗) ≥ u(�, �∗). 

Moreover, if, for some � ∈ Σ, u(�∗, �∗) = u(�, �∗), then 

u(�∗, �) > u(�, �). 

Interpretation: An evolutionarily stable strategy �∗ is a Nash 
equilibrium. If �∗ is not a strict Nash equilibrium, then any other 
strategy � that is a best response to �∗ must be worse against itself 
than against �∗. 
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Evolutionary Stability: Equivalence of the Two Definitions


Theorem 

The two definitions of evolutionarily stable strategies are equivalent. 

Proof: (First implies second) 

Since the first definition holds for any � < �̄, as � 0,→ 
u(�∗, �� + (1 − �) �∗) > u(�, �� + (1 − �) �∗) implies 

u(�∗, �∗) ≥ u(�, �∗), 

thus establishing part 1 of the second definition. 
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Proof (continued) 

To establish part 2, suppose that u(�∗, �∗) = u(�, �∗). Recall that u 
is linear in its arguments (since it is expected utility), so Condition I, 
u(�∗, �� + (1 − �) �∗) > u(�, �� + (1 − �) �∗), can be written as 

�u(�∗, �) + (1 − �) u(�∗, �∗) > �u(�, �) + (1 − �) u(�, �∗). 

Since u(�∗, �∗) = u(�, �∗), this is equivalent to 

�u(�∗, �) > �u(�, �),


Since � > 0, part 2 of the second definition follows.
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Proof (continued) 

(Second implies first) 

We have that for any � ∈ Σ, u(�∗, �∗) ≥ u(�, �∗). With the same 
argument as above, rewrite Condition I in the first definition as 

�u(�∗, �) + (1 − �) u(�∗, �∗) > �u(�, �) + (1 − �) u(�, �∗). (∗) 

If the inequality is strict, for � sufficiently small, the first definition is 
satisfied (since u(�∗, �) − u(�, �) is a finite number). 

If this relation holds as equality, then the second definition implies 

u(�∗, �) > u(�, �). 

Multiply this by �, use the fact that u(�∗, �∗) = u(�, �∗), and add 
(1 − �) u(�∗, �∗) to the left hand side and (1 − �) u(�, �∗) to the 
right hand side, which gives (∗) and hence Condition I. 
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Evolutionary Stability and Nash Equilibrium 

Now given our second definition, the following is immediate: 

Theorem 

A strict (symmetric) this Nash equilibrium of a symmetric game is an

evolutionarily stable strategy.


An evolutionarily stable strategy is a Nash equilibrium.


Proof: Both parts immediately follow from the second definition. 

Their converses are not true, however, as we will see. 
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Monomorphic and Polymorphic Evolutionarily Stability 

In addition, we could require an evolutionarily stable strategy (ESS) to 
be monomorphic—that is, all agents to use the same (pure) strategy. 

The alternative is polymorphic, where different strategies coexist, 
mimicking a mixed strategy equilibrium. 

With these definitions, let us return to the Hawk-Dove game. 
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The Hawk-Dove Game


Player 1/Player 2 Hawk Dove 
Hawk 

(
1
2 (v − c) , 12 (v − c)

) ( (v , 0) )
Dove (0, v) 2

1 v , 2
1 v

Recall that if v > c , then there is a unique strict Nash equilibrium, 
which is (Hawk, Hawk). Therefore, in this case “Hawk” is also an 
evolutionarily stable strategy. 

Moreover, it is monomorphic. 
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The Hawk-Dove Game (continued) 

What happens if v = c? 

Recall that now there is a unique Nash equilibrium, (Hawk, Hawk), 
which is not a strict Nash equilibrium. 

We will now show that it is still an evolutionarily stable strategy. 

Since “Dove” is also a best response, we need to look at u (H, D) vs. 
u (D, D). Clearly the first one is greater, so part 2 of the second 
definition is satisfied. Therefore “Hawk” is evolutionarily stable. 

It is also monomorphic. 

This example also shows that strict Nash equilibrium is stronger than 
evolutionarily stable strategy. 
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The Hawk-Dove Game (continued) 

Suppose now v < c , then there exists three Nash equilibria: (Hawk, 
Dove) and (Dove, Hawk), which are non-symmetric strict equilibria, 
and a mixed strategy symmetric equilibrium. 

The first observation is that there exists no monomorphic 
evolutionarily stable strategy. This shows the importance of looking 
at polymorphic strategies. 

Since this is a random matching game, clearly the non-symmetric 
equilibria are irrelevant (why?). 

Is the mixed strategy equilibrium evolutionarily stable? 
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The Hawk-Dove Game (continued) 

First note that when v < c , the unique mixed strategy equilibrium of 
the strategic form game involves each player playing “Hawk” with 
probability v/c . The polymorphic evolutionary stable outcome will be 
a population where fraction v/c of the agents are type “Hawk”. Let 
us designate this is by �∗. 

We now need to show that such an outcome cannot be invaded by 
any other (mixed) strategy. That is, we need to check part 2 of the 
second definition. (Clearly, since �∗ is a mixed strategy, any other 
mixed strategy � satisfies u(�∗, �∗) = u(�, �∗)). 

Consider a mixed strategy, � =∕ �∗, where a fraction p =∕ v/c play 
“Hawk”. 
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The Hawk-Dove Game (continued) 

Then 

1

u(�, �) = p 2 × 

2
(v − c) + p (1 − p) × v


+p (1 − p) × 0 + (1 − p)2 × 
2

1 
v


v 1 v

u(�∗, �) = 

c
p × 

2
(v − c) + 

c 
(1 − p) × v
( ) ( )
v v 1 

+ 1 − p × 0 + 1 − (1 − p) × v 
c c 2 

Therefore 
1 (v )2 

u(�∗, �) − u(�, �) = 
2 
c

c 
− p > 0, 

which establishes the desired result. 

This result also shows the possibility of polymorphic evolutionarily 
stable strategies. 
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Nash Equilibrium Does Not Imply ESS 

Consider the modified rock-paper-scissors game: 

R P S 
R (�, �) (−1, 1) (1, −1) 
P (1, −1) (�, �) (−1, 1) 
S (−1, 1) (1, −1) (�, �) 

Here 0 ≤ � < 1. If � = 0, this is the standard rock-paper-scissors 
game. 

For all such �, there is a unique mixed strategy equilibrium 
�∗ = (1/3, 1/3, 1/3), with expected payoff u (�∗, �∗) = �/3. But for 
� > 0, this is not ESS. For example, � = R would invade, since 
u (�, �∗) = �/3 < u (�, �) = �. 

This also shows that ESS doesn’t necessarily exist. 
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Do Animals Play Games? 

The answer seems to be yes. 

They seem to play mixed strategies: sticklebacks are able to 
coordinate between the two sides of a fish tank, with different 
amounts of food “supply”. 

This is like a “mixed strategy,” since any food is shared among the 
sticklebacks at that end. 

Remarkably, when the relative amounts of food supplies into the fish 
tank at two sides is varied, sticklebacks are able to settle into the 
appropriate “mixed strategy” pattern given the new food supplies. 
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Do Animals Play Games? 

Side-blotched lizards seem to play a version of the Hawk-Dove game. 
Three productive strategies for male lizards with distinct throat colors 
(that are genetically determined): 

orange color: very aggressive and defend large territories; 
blue color: less aggressive defense smaller territories; 
yellow color: not aggressive, opportunistic mating behavior. 

Tails seem to be as follows: 
when all are orange, yellow does well; when all are yellow, blue does 
well; and when all are blue, orange does well. 

This is similar to the modified rock-paper-scissors pattern, and in 
nature, it seems that there are fluctuations in composition of male 
colorings as we should expect on the basis that the game does not 
have any evolutionarily stable strategies. 
See Karl Sigmund (1993) Games of Life, for many more fascinating 
examples, for animals, lower organisms and cells. 
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Dynamics 

The discussion of “dynamics” so far was largely heuristic. 

Are there actual dynamics of populations resulting from 
“game-theoretic” interactions that lead to evolutionarily stable 
strategies? 

Question at the intersection of game theory and population dynamics. 

The answer to this question is yes, and here we will discuss the 
simplest example, replicator dynamics. 

Throughout, we continue to focus on symmetric games. 
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Replicator Dynamics 

Let us formalize the discussion of fitness and offspring provided above. 

Let us enumerate the strategies by s = 1, 2, ..., K . 

Denote the fraction of the population playing strategy s by xs . 

The setup is similar to that considered above: at each instant, each 
agent is randomly matched with another from a large population. 

What matters is expected fitness given by 

u (s, �) . 

In particular, recall that this is the expected fitness (payoff) of agents 
playing s when the mixed strategy induced by the polymorphic 
strategy profile is �. 
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Replicator Dynamics (continued) 

Then, we can posit the following dynamic evolution: 

xs (t + �) − xs (t) = xs (t) 
� [u (s, � (t)) − ū (� (t))] 

, 
ū (� (t)) 

(Replicator equation) 
for each s = 1, 2, ..., K and for all t and � , where 

K∑ 
ū (� (t)) = xs (t) u (s, � (t)) 

s=1 

is average fitness at time t and � (t) is the vector of xs (t)’s.∑KNaturally, s=1 xs (t) = 1 by definition. 
This equation gives discrete time dynamics when � = 1. But the 
equation is valid for any � . 
Intuitively, the greater is the fitness of a strategy relative to the 
average fitness, the greater is its relative increase in the population. ∑KClearly, this equation is meaningful, i.e., s=1 xs (t + �) = 1. 
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Replicator Dynamics: Continuous Time 

It is most convenient to work with replicator dynamics in continuous 
time. 

Divide both sides of the replicator equation by � and take the limit as 
� 0. This gives → 

lim 
xs (t + �) − xs (t)

= xs (t)
[u (s, � (t)) − ū (� (t))] 

. 
� →0 � ū (� (t)) 

Therefore 

ẋs (t) = xs (t) 
u (s, � (t)) − ū (� (t)) 

, (Continuous replicator) 
ū (� (t)) 

where recall that ẋs (t) ≡ dxs (t) /dt. 

Notice that xs (t) is not written in the denominator of the left-hand 
side, since it can be equal to zero. 
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Replicator Dynamics: Implications 

Now we can think of the dynamics starting from an arbitrary 
distribution of strategies in the population. 

There are two ways of doing this: 

Ask whether a particular vector of distribution x∗ is a stationary state 
of equation (Continuous replicator), meaning that it has ẋs 

∗ (t) = 0 for 
all s. 
Ask whether a particular vector of distribution x∗ is an asymptotically 
stable state, meaning that there exists a neighborhood of x∗ such that 
starting from any x0 in this neighborhood, dynamics induced by 
(Continuous replicator) approach x∗. 
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Replicator Dynamics and Nash Equilibria 

Theorem 

If x∗ is a Nash equilibrium, then it is a stationary state. 

Proof: If x∗ is a Nash equilibrium, then it is a best response to itself, and 
thus no strategy has u (s, � (t)) − ū (� (t)) > 0, and 
u (s, � (t)) − ū (� (t)) = 0 only for strategies in the support of the mixed 
strategy profile induced by x∗. Thus for any s, either 
u (s, � (t)) − ū (� (t)) = 0 or xs (t) = 0, and hence ẋ∗ (t) = 0 for all s.s 

However, the converse of this statement is not true, since if x∗ 

corresponds to a non-Nash pure strategy, then xs 
∗ (t) = 0 for all s 

other than the pure strategy in question, and x∗ is stable. 

Thus stability is not a particularly relevant concept. We would like x∗ 

to be robust to “perturbations”—or against attempts at invasion. 
This requires asymptotic stability. 
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Replicator Dynamics and Nash Equilibria (continued)


Theorem 

If x∗ is asymptotically stable, then it is a Nash equilibrium. 

The proof is immediate if x∗ corresponds to a pure strategy

(monomorphic population).


In the case where x∗ corresponds to a mixed strategy Nash 
equilibrium, the proof is also straightforward but long. The basic idea 
is that equation (Continuous replicator) implies that we are moving in 
the direction of “better replies”—relative to the average. If this 
process converges, then there must not exist any more (any other) 
strict better replies, and thus we must be at a Nash equilibrium. 

The converse is again not true. 
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Replicator Dynamics and Nash Equilibria (continued) 

Consider, for example, 

A B 
A (1, 1) (0, 0) 
B (0, 0) (0, 0) 

Here (B,B) is a Nash equilibrium, but clearly it is not asymptotically 
stable, since B is weakly dominated, and thus any perturbation away 
from (B,B) will start a process in which the fraction of agents playing 
A steadily increases. 
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Replicator Dynamics and Evolutionary Stability 

The key result here is the following, which justifies the focus on 
Evolutionary stable strategies. 

Theorem 

If x∗ is evolutionarily stable, then it is asymptotically stable. 

The proof is again somewhat delicate, but intuitively straightforward. 
The first definition of ESS states that for small enough perturbations, 
the evolutionarily stable strategy is a strict best response. This 
essentially implies that in the neighborhood of the ESS �∗, �∗ will do 
better than any other strategy �, and thus according to (Continuous 
replicator), the fraction of those playing �∗ should increase, thus 
implying asymptotic stability. 

The converse of this result is not true, but mostly because of

“technical reasons”. Versions of its converse can be developed.
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Evolution and Network Structure


So far, no network structure in evolutionary interactions because of 
the random matching assumption (and this will be also the case 
when we turn to learning next). 

But this is not realistic. In practice, animals, organisms and humans 
play and compete more against “nearby” agents. 

One interesting area is to incorporate network structure into dynamics 
of game-theoretic behavior. 

We will do so in two different contexts later in the course: 

Evolution with local interactions. 
Games in which payoffs are determined by local interactions (so-called 
Network Games). 
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Learning vs. Evolution 

Evolution is a good model for fully myopic behavior. But even when 
individuals follow rules of thumb, they are not fully myopic. 

Moreover, in evolution, the time scales are long. We need 
“mutations,” which are random and, almost by definition, rare. 

In most (human) game-theoretic situations, even if individuals are not 
fully rational, they can imitate more successful strategies quickly, and 
learn the behavior of their opponents and best respond to those. 

This suggests a related but distinct approach to dynamic 
game-theoretic behavior, which is taken in the literature on learning 
in games. 

Note that this is different from Bayesian game-theoretic learning, which 
we will discuss later in the course. 
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“belief-based” learning rule, i.e., players form beliefs about
opponent play (from the entire history of past play) and behave
rationally with respect to these beliefs.

Networks: Lectures 13 and 14 Learning in Games 

Models of Learning 

One approach is to try to import menu of the insides of evolutionary 
game theory into the area of “learning in games”. 
For example, for a symmetric game, we could posit an imitation rule 
that takes the form of equation (Continuous replicator), i.e., 
individuals imitate the strategies of others in proportion to how much 
they outperform the average in the population. Though plausible, this 
requires “global knowledge” on the part of individuals about others’ 
payoffs. 
More importantly, in the context of learning, it may be more fruitful 
to ask: “what are players learning about?” The most plausible answer 
is the strategies of others. 
One of the earliest learning rules, fictitious play, introduced in Brown 
(1951) “Iterative solutions of games by fictitious play,” is motivated 
by this type of reasoning. 
The idea is to look at a dynamic process where each player best 
responds to the time average of the behavior of its opponents. 
The most compelling interpretation of fictitious play is therefore as a38 
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Setup 

Let us first focus on a strategic form game ⟨ℐ, (Si )i∈ℐ , (ui )i∈ℐ ⟩.

The players play this game at times t = 1, 2, . . ..


The stage payoff of player i is again given by ui (si , s−i ) (for pure

strategy profile si , s−i ).


For t = 1, 2, . . . and i = 1, 2, define the function �ti : S−i → ℕ, where

�ti (s−i ) is the number of times player i has observed the action s−i 

before time t. Let �0(s−i ) represent a starting point (or fictitious i 
past).


For example, consider a two player game, with S2 = {U, D}. If

�01(U) = 3 and �01(D) = 5, and player 2 plays U, U, D in the first

three periods, then �31(U) = 5 and �31(D) = 6.
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The Basic Idea


The be the idea of fictitious play is that each player assumes that his 
opponent is using a stationary mixed strategy, and updates his beliefs 
about this stationary mixed strategies at each step. 

Players choose actions in each period (or stage) to maximize that 
period’s expected payoff given their prediction of the distribution of 
opponent’s actions, which they form according to: 

�t
i (s−i ) = ∑ 

�i
t (s−

�
i
t 

)

(s̄
. 

s̄−i ∈S−i i −i ) 

For example, in a two player game, player i forecasts player −i ’s 
strategy at time t to be the empirical frequency distribution of past 
play. 
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Fictitious Play Model of Learning 

Given player i ’s belief/forecast about his opponents play, he chooses 
his action at time t to maximize his payoff, i.e., 

s t ∈ arg max ui (si , �
t
i ).i 

si ∈Si 

Even though fictitious play is“belief based,” it is also myopic, 
because players are trying to maximize current payoff without 
considering their future payoffs. Perhaps more importantly, they are 
also not learning the “true model” generating the empirical 
frequencies (that is, how their opponent is actually playing the game). 
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Example 

Consider the fictitious play of the following game: 

L R 
U (3, 3) (0, 0) 
D (4, 0) (1, 1) 

Note that this game is dominant solvable (D is a strictly dominant 
strategy for the row player), and the unique NE (D, R). 
Assume that �01 = (3, 0) and �02 = (1, 2.5). Then fictitious play 
proceeds as follows: 

Period 1: Then, �0
1 = (1, 0) and �0

2 = (1/3.5, 2.5/3.5), so play follows 
s1
0 = D and s2

0 = L. 
Period 2: We have �11 = (4, 0) and �12 = (1, 3.5), so play follows 
s1
1 = D and s2

1 = R. 
Period 3: We have �11 = (4, 1) and �12 = (1, 4.5), so play follows 
s1
2 = D and s2

2 = R. 
Periods 4:... 
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Example (continued) 

Since D is a dominant strategy for the row player, he always plays D, 
and �t 

2 converges to (0, 1) with probability 1. 

Therefore, player 2 will end up playing R. 

The remarkable feature of the fictitious play is that players don’t have 
to know anything about their opponent’s payoff. They only form 
beliefs about how their opponents will play. 
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Convergence of Fictitious Play to Pure Strategies 

Let {�t } be a sequence of strategy profiles generated by fictitious 
play (where for each t, �t ∈ Σt ). Let us now study the asymptotic 
behavior of the sequence {�t }, i.e., the convergence properties of the 
sequence {�t } as t → ∞. 
We first define the notion of convergence to pure strategies. 

Definition 

The sequence {�t } converges to s if there exists T such that �t = s for 
all t ≥ T (i.e., it puts probability 1 on pure strategy s). 

Theorem 

Let {�t } be a sequence of strategy profiles generated by fictitious play. 

If {�t } converges to s̄ , then s̄ is a pure strategy Nash equilibrium. 

Suppose that for some t, �t = s∗, where s∗ is a strict Nash

equilibrium. Then �� = s∗ for all � > t.
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Proof 

Part part 1 is straightforward. Consider the proof of part 2. 

Let �t = s∗. We will show that �t+1 = s∗. Note that 

�t+1 t= (1 − �)�t + �s−i = (1 − �)�t + �s∗ 
i i i −i , 

where, abusing the notation, we used st to denote the degenerate −i 
probability distribution and


1

� = ∑ . 

�t (s−i ) + 1 s−i i 

Therefore, by the linearity of the expected utility, we have for all 
si ∈ Si ,


ui (si , �
t+1) = (1 − �)ui (si , �

t
i ) + �ui (si , s−

∗ 
i ).
i 

Since si 
∗ maximizes both terms (in view of the fact that s∗ is a strict 

Nash equilibrium), it follows that si 
∗ will be played at t + 1. 

45 



Networks: Lectures 13 and 14 Learning in Games 

Convergence of Fictitious Play to Mixed Strategies 

The preceding notion of convergence only applies to pure strategies. 
We next provide an alternative notion of convergence, i.e., 
convergence of empirical distributions or beliefs. 

Definition 

The sequence {�t } converges to � ∈ Σ in the time-average sense if for all 
i and for all si ∈ Si , we have 

lim 
[number of times si

t = si for t ≤ T ]
= �(si ), 

T →∞ T + 1 

i.e., �T (si ) converges to �(si ) as T → ∞.−i 
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Convergence in Matching Pennies: An Example 

Player 1 ∖ Player 2 heads tails 
heads (1, −1) (−1, 1) 
tails (−1, 1) (1, −1) 

Time �1 
t �2 

t Play 
0 (0, 0) (0, 2) (H, H) 
1 (1, 0) (1, 2) (H, H) 
2 (2, 0) (2, 2) (H, T ) 
3 (2, 1) (3, 2) (H, T ) 
4 (2, 2) (4, 2) (T , T ) 
5 (2, 3) (4, 3) (T , T ) 
6 ... ... (T , H) 

In this example, play continues as a deterministic cycle. The time 
average converges to the unique Nash equilibrium,( )
(1/2, 1/2), (1/2, 1/2) . 
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More General Convergence Result 

Theorem 

Suppose a fictitious play sequence {st } converges to � in the time-average 
sense. Then � is a Nash equilibrium. 

Proof: 

Suppose st converges to � in the time-average sense. 

Suppose, to obtain a contradiction, that � is not a Nash equilibrium. 
Then there exist some i , si , si 

′ ∈ Si with �i (si ) > 0 such that 

ui (si 
′, �−i ) > ui (si , �−i ). 
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Proof (continued) 

Choose � > 0 such that 

� <

1

2


[

ui (si 

′, �−i ) − ui (si , �−i )
]

,


and T sufficiently large that for all t ≥ T , we have


�T
i (s−i ) − �−i (s−i ) < ,


maxs∈S ui (s)

which is possible since �t
i � by assumption. → −i 
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Proof (continued) 

Then, for any t ≥ T , we have ∑ 
ui (si , �

t
i ) = ui (si , s−i )�i

t (s−i ) 
s−i ∑ 

≤ ui (si , s−i )�−i (s−i ) + � 
s−i ∑ 

< ui (si 
′ , s−i )�−i (s−i ) − � 

s−i ∑ 
≤ ui (si 

′ , s−i )�
t
i (s−i ) = ui (si 

′, �i
t ). 

s−i 

This shows that after T , si is never played, implying that as T → ∞, 
�t (si ) 0. But this contradicts the fact that �i (si ) > 0, completing −i →
the proof. 
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Convergence 

Theorem 

Fictitious play converges in the time-average sense for the game G under 
any of the following conditions: 

G is a two player zero-sum game. 

G is a two player nonzero-sum game where each player has at most 
two strategies. 

G is solvable by iterated strict dominance. 

G is an identical interest game, i.e., all players have the same payoff 
function. 

G is a potential game. 

Below, we will prove convergence (in a stronger sense than here) in 
potential games using continuous-time fictitious play. 
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Miscoordination


However, convergence in the time-average sense is not necessarily a 
natural convergence notion, as illustrated in the following example. 

Consider the fictitious play of the following game: 

Player 1 ∖ Player 2 A B 
A (1, 1) (0, 0) 
B (0, 0) (1, 1) 

Note that this game had a unique mixed Nash equilibrium( )
(1/2, 1/2), (1/2, 1/2) . 
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Miscoordination (continued) 

Consider the following sequence of play: 

Time �1 
t �2 

t Play 
0 (1/2, 0) (0, 1/2) (A, B) 
1 (1/2, 1) (1, 1/2) (B , A) 
2 (3/2, 1) (1, 3/2) (A, B) 
3 ... ... (B , A) 
4 ... ... (A, B) 

Play continues as (A,B), (B,A), . . ., which is again a deterministic ( )
cycle. The time average converges to (1/2, 1/2), (1/2, 1/2) , which 

is a mixed strategy equilibrium of the game. But players never 
successfully coordinate and receive zero payoffs throughout! 
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Non-convergence 

Convergence of fictitious play can also not be guaranteed. 

Shapley showed that in modified rock-scissors-paper game, fictitious 
play does not converge. 

Recall: 
R P S 

R (�, �) (−1, 1) (1, −1) 
P (1, −1) (�, �) (−1, 1) 
S (−1, 1) (1, −1) (�, �) 

When � = 0 this is a zero-sum game and there is convergence to a 
deterministic cycle as in the matching pennies. When � > 0, Shapley 
showed that there are “cycles” of ever-increasing length, thus 
non-convergence. 
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Continuous-Time Fictitious Play 

As with the replicator dynamics, continues-time version of fictitious 
play is more tractable. 

To show that in potential games, fictitious play converges factual 
Nash equilibrium behavior, we will use continuous-time fictitious play. 

Denote the empirical distribution of player i ’s play up to (but not 
including) time t when time intervals are of length Δt by ∑(t−Δt)/Δt 

pi
t (si ) = �=0 ℐ{si = si }

. 
t 

We use pt ∈ Σ to denote the product distribution formed by the pi
t . 

We can now think of making time intervals Δt smaller as we did in 
replicator dynamics (also rescaling time), which will lead us to a 
version a fictitious play in continuous time. We next study this 
continuous-time fictitious play model. 
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Continuous-Time Fictitious Play (continued) 

In continuous time fictitious play (CTFP), the empirical distributions 
of the players are updated in the direction of a best response to their 
opponents’ past action: 

dpi
t 

t t∈ BRi (p−i ) − pi ,dt 

where 
t tBRi (p−i ) = arg max ui (�i , p−i ). 

�i ∈Σi 

In addition, we impose that 

dpi
t 

t= 0 if p is a Nash equilibrium. 
dt 

We next show that fictitious play converges for (finite) potential 
games. 

56 



Networks: Lectures 13 and 14 Continuous-Time Fictitious Play 

Convergence of Fictitious Play for Potential Games 

Recall that a function Φ : S ℝ is an exact potential function for →
the game G if for each i ∈ ℐ and all s−i ∈ S−i , 

ui (x , s−i ) − ui (z , s−i ) = Φ(x , s−i ) − Φ(z , s−i ), for all x , z ∈ Si . 

Here we focus on exact potential games, but the result is 
straightforward to generalize to ordinal potential games. 
Consider the continuous time fictitious play (CTFP) dynamics: 

dpi
t 

t t∈ BRi (p−i ) − pi . dt 
Let {pit } denote the sequence generated by CTFP dynamics and let 
�t t t 
i = pi + dpi

t /dt. Note that �i
t ∈ BRi (p−i ). 

Theorem 

In finite potential games, continuous-time fictitious play converges to 
equilibrium behavior. 
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Proof 

For each player i , we define the function 

Ui (�i , �−i ) = max ui (�
′ 
i , �−i ) − ui (�i , �−i ), 

�′ 
i ∈Σ 

Intuitively, the function Ui gives the maximum possible payoff 
improvement player i can achieve by a unilateral deviation. ∑ 
We define W (t) ≡ Ui (p

t ). Observe that i ⎡ ⎤ 
d d ∑ ∑ 

t t(Φ(p t )) = ⎣ p1(s1) pn(sn)Φ(s)⎦ 
dt dt 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
si ∈Si sn∈Sn ⎛ ⎞ ∑ ∑ ∑ dpt ∏ 

= ⋅ ⋅ ⋅ 
dt 

i (si ) ⎝ pj
t (sj )⎠ Φ(s) 

i si ∈Si sn∈Sn j=i ( ) 
∕∑ dpt 

= Φ i , p t . 
dt −i 

i 
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Proof (Continued) 

The preceding explicit derivation essentially follows from the fact that 
Φ is linear in its arguments, because these are mixed strategies of 
players. Therefore, the time derivative can be directly applied to the 
arguments. 

Now, observe that ( )
i t t t t t ),Φ 

dpt 
, p−i = Φ(�t − pi , p−i ) = Φ(�t

i , p−i ) − Φ(p t ) = Ui (p
dt i 

where the second equality again follows by the linearity of Φ in mixed 
tstrategies. The last equality uses the fact that �t ∈ BRi (p−i ).i 

Combining this relation with the previous one, we have 

d ∑ 
(Φ(p t )) = Ui (p t ) = W (t). 

dt 
i 
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Proof (Continued) 

Since W (t) is nonnegative everywhere, we conclude Φ(pt ) is 
nondecreasing as t increases; thus Φ∗ = limt→∞ Φ(p

t ) exists (since Φ 
is bounded above, Φ∗ < ∞). 
Moreover, we have ∫ Δ 

Φ∗ − Φ(p t ) ≥ Φ(p t+Δ) − Φ(p t ) = W (t + � )d� ≥ 0. 
0 

the first inequality uses the fact that since Φ is nondecreasing; the 
middle inequality follows from the fundamental theorem of calculus, 
and the last inequality simply uses the fact that W (t) is everywhere 
nonnegative. 

Since the left-hand side converges to zero, we conclude that 
W (t) → 0 as t → ∞. 

0This establishes that for each i and for any initial condition p , [ ]
t t tlim max Φ(�i 

′ , p−i ) − Φ(pi , p−i ) = 0. 
t→∞ �′ 

i ∈Σi 

60 



Networks: Lectures 13 and 14 Continuous-Time Fictitious Play 

Proof (Continued) 

Since Φ is the potential function, this implies [ ]
t t tlim max ui (�

′ 
i , p−i ) − ui (pi , p−i ) = 0. 

t→∞ �′ 
i ∈Σi 

Therefore, behavior converges to the equilibrium. 
Notice that what we have here is much stronger than convergence of 
fictitious play in empirical distribution (the results discussed above). 
Instead, we have that for any initial condition p0 , pt converges to a 
set of empirical distributions P∞, where Φ(p) = Φ∗ for all p ∈ P∞, 
and the mixed strategy of each player is the one that maximizes 
payoff in response to these distributions. 
Implication: the miscoordination illustrated above cannot happen. 
Moreover, recall that potential games have pure strategy equilibria. If 
this pure strategy equilibrium is the unique equilibrium, this result 
implies convergence to this unique equilibrium. 
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Implications 

This result implies that in potential games, rule of thumb behavior 
will take us towards Nash equilibrium. 

While this result is stated for finite games, it can be generalized for 
infinite games as well. 

Since, as we have seen, many congestion, network traffic and routing, 
and network formation games are potential games, these results imply 
that for a range of network games, Nash equilibrium behavior will 
emerge even without very sophisticated reasoning on the part of the 
players. 
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