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Networks: Lecture 15 Introduction 

Outline


The problem of cooperation 

Finitely-repeated prisoner’s dilemma 

Infinitely-repeated games and cooperation 

Folk theorems 

Cooperation in finitely-repeated games 

Social preferences 

Reading: 

Osborne, Chapters 14 and 15. 
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Prisoners’ Dilemma 

How to sustain cooperation in the society? 

Recall the prisoners’ dilemma, which is the canonical game for 
understanding incentives for defecting instead of operating. 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

Recall that the strategy profile (D, D) is the unique NE. In fact, D 
strictly dominates C and thus (D, D) is the dominant equilibrium. 

In society, we have many situations of this form, but we often observe 
some amount of cooperation. 

Why? 
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Networks: Lecture 15 Introduction 

Repeated Games 

In many strategic situations, players interact repeatedly over time. 

Perhaps repetition of the same game might foster cooperation. 

By repeated games we refer to a situation in which the same stage 
game (strategic form game) is played at each date for some duration 
of T periods. 

Such games are also sometimes called “supergames”. 

Key new concept: discounting. 

We will imagine that future payoffs are discounted and are thus less 
valuable (e.g., money and the future is less valuable than money now 
because of positive interest rates; consumption in the future is less 
valuable than consumption now because of time preference). 
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Discounting 

We will model time preferences by assuming that future payoffs are 
discounted proportionately (“exponentially”) at some rate δ ∈ [0, 1), 
called the discount rate. 

For example, in a two-period game with stage payoffs given by u1 and 
u2, overall payoffs will be 

U = u 1 + δu 2 . 

With the interest rate interpretation, we would have 

1 
δ = ,

1 + r 

where r is the interest rate. 
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Mathematical Model


More formally, imagine that I players are playing a strategic form 
game G = �I, (Ai )i∈I , (ui )i∈I � for T periods. At each period, the 
outcomes of all past periods are observed by all players. 

Let us start with the case in which T is finite, but we will be

particularly interested in the case in which T = ∞.


Here Ai denotes the set of actions at each stage, and 

ui : A R,→ 

where A = � 
A1 × · · · × AI . 

That is, ui ai
t , at is the state payoff to player i when action profile � � −i


at = ai
t , at is played.
−i 
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Mathematical Model (continued) 

t TWe use the notation a = {a }t=0 to denote the sequence of action 
profiles. We could also define σ = {σt } T to be the profile of mixed t=0 
strategies. 

The payoff to player i in the repeated game 

T

δt t tU(a) = ui (ai , a−i ) 
t=0 

where δ ∈ [0, 1). 

We denote the T -period repeated game with discount factor δ by 
G T (δ). 

7 



Networks: Lecture 15 Introduction 

Finitely-Repeated Prisoners’ Dilemma 

Recall 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

What happens if this game was played T < ∞ times? 

We first need to decide what the equilibrium notion is. Natural 
choice, subgame perfect Nash equilibrium (SPE). 

Recall: SPE backward induction. ⇐⇒ 

Therefore, start in the last period, at time T . What will happen? 
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Finitely-Repeated Prisoners’ Dilemma (continued) 

In the last period,“defect” is a dominant strategy regardless of the 
history of the game. So the subgame starting at T has a dominant 
strategy equilibrium: (D, D). 

Then move to stage T − 1. By backward induction, we know that at 
T , no matter what, the play will be (D, D). Then given this, the 
subgame starting at T − 1 (again regardless of history) also has a 
dominant strategy equilibrium. 

With this argument, we have that there exists a unique SPE: (D, D) 
at each date. 

In fact, this is a special case of a more general result. 
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Equilibria of Finitely-Repeated Games 

Theorem 

Consider repeated game G T (δ) for T < ∞. Suppose that the stage game 
G has a unique pure strategy equilibrium a∗. Then G T has a unique SPE. 
In this unique SPE, at = a∗ for each t = 0, 1, ..., T regardless of history. 

Proof: The proof has exactly the same logic as the prisoners’ dilemma 
example. By backward induction, at date T , we will have that (regardless 
of history) aT = a∗. Given this, then we have aT −1 = a∗, and continuing 
inductively, at = a∗ for each t = 0, 1, ..., T regardless of history. 
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Infinitely-Repeated Games 

Now consider the infinitely-repeated game G ∞. 

The notation a = {at }∞t=0 now denotes the (infinite) sequence of 
action profiles. 

The payoff to player i is then 

∞

δt t tU(a) = (1 − δ) ui (ai , a−i ) 
t=0 

where, again, δ ∈ [0, 1). 

Note: this summation is well defined because δ < 1. 

The term in front is introduced as a normalization, so that utility 
remains bounded even when δ 1.→ 
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Trigger Strategies 

In infinitely-repeated games we can consider trigger strategies. 

A trigger strategy essentially threatens other players with a “worse,” 
punishment, action if they deviate from an implicitly agreed action 
profile. 

A non-forgiving trigger strategy (or grim trigger strategy) s would 
involve this punishment forever after a single deviation. 

A non-forgiving trigger strategy (for player i) takes the following form: 

t āi if aτ = ā for all τ < t 
a = i ai if aτ = ¯� a for some τ < t 

Here if ā is the implicitly agreed action profile and ai is the

punishment action.


This strategy is non-forgiving since a single deviation from ā induces 
player i to switch to ai forever. 
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Cooperation with Trigger Strategies in the Repeated 
Prisoners’ Dilemma 

Recall 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

Suppose both players use the following non-forgiving trigger strategy 
s∗: 

Play C in every period unless someone has ever played D in the past 
Play D forever if someone has played D in the past. 

We next show that the preceding strategy is an SPE if δ ≥ 1/2. 
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Cooperation with Trigger Strategies in the Repeated 
Prisoners’ Dilemma 

Step 1: cooperation is best response to cooperation. 

Suppose that there has so far been no D. Then given s∗ being played 
by the other player, the payoffs to cooperation and defection are: 

Payoff from C : (1 − δ)[1 + δ + δ2 + · · · ] = (1 − δ) × 1−
1 

δ = 1 
Payoff from D : (1 − δ)[2 + 0 + 0 + ] = 2(1 − δ)· · · 

Cooperation better if 2(1 − δ) ≥ 1. 
This shows that for δ ≥ 1/2, deviation to defection is not profitable. 
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Cooperation with Trigger Strategies in the Repeated 
Prisoners’ Dilemma (continued) 

Step 2: defection is best response to defection. 

Suppose that there has been some D in the past, then according to s∗, 
the other player will always play D. Against this, D is a best response. 

This argument is true in every subgame, so s∗ is a subgame perfect 
equilibrium. 

Note: cooperating in every period would be a best response for a 
player against s∗. But unless that player herself also plays s∗, her 
opponent would not cooperate. Thus SPE requires both players to 
use s∗. 
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Multiplicity of Equilibria 

Cooperation is an equilibrium, but so are many other strategy profiles. 

Multiplicity of equilibria endemic in repeated games. 

Note that this multiplicity only occurs at T = ∞. 

In particular, for any finite T (and thus by implication for T →∞), 
prisoners’ dilemma has a unique SPE. 

Why? The set of Nash equilibria is an upper hemi-continuous 
correspondence in parameters. It is not necessarily lower 
hemi-continuous. 
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Repetition Can Lead to Bad Outcomes 

The following example shows that repeated play can lead to worse 
outcomes than in the one shot game: 

A B C 
A 2, 2 2, 1 0, 0 
B 1, 2 1, 1 −1, 0 
C 0, 0 0, −1 −1, −1 

For the game defined above, the action A strictly dominates both B 
and C for both players; therefore the unique Nash equilibrium of the 
stage game is (A, A). 
If δ ≥ 1/2, this game has an SPE in which (B, B) is played in every 
period. 
It is supported by the trigger strategy: Play B in every period unless 
someone deviates, and play C if there is any deviation. 
It can be verified that for δ ≥ 1/2, (B , B) is an SPE. 
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Folk Theorems


In fact, it has long been a “folk theorem” that one can support 
cooperation in repeated prisoners’ dilemma, and other 
“non-one-stage“equilibrium outcomes in infinitely-repeated games 
with sufficiently high discount factors. 

These results are referred to as “folk theorems” since they were 
believe to be true before they were formally proved. 

Here we will see a relatively strong version of these folk theorems. 
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Feasible Payoffs 

Consider stage game G = �I, (Ai )i∈I , (ui )i∈I � and infinitely-repeated

game G ∞ (δ).


Let us introduce the Set of feasible payoffs:


V = Conv{v ∈ RI | there exists a ∈ A such that u(a) = v}. 

That is, V is the convex hull of all I - dimensional vectors that can be 
obtained by some action profile. Convexity here is obtained by public 
randomization. 

Note: V is not equal to {v ∈ RI | there exists σ ∈ Σ such that 
u(σ) = v}, where Σ is the set of mixed strategy profiles in the stage 
game. 
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Networks: Lecture 15 Folk Theorems 

Minmax Payoffs 

Minmax payoff of player i : the lowest payoff that player i ’s opponent 
can hold him to: 

v i = min max ui (ai , a−i ) 
a−i ai 

= max min ui (ai , a−i ) . 
ai a−i 

The player can never receive less than this amount. 

Minmax strategy profile against i : 

i m−i = arg min max ui (ai , a−i ) 
a−i ai 
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Example 

Consider 

L R 
U −2, −2 1, −2 
M 1, −1 −2, 2 
D 0, 1 0, 1 

To compute v1, let q denote the probability that player 2 chooses 
action L. 

Then player 1’s payoffs for playing different actions are given by: 

U 1 − 3q→
M → −2 + 3q 
D 0→ 
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Example 

Therefore, we have


v1 = min [max{1 − 3q, −2 + 3q, 0}] = 0,

0≤q≤1


and m2
1 ∈ [13 , 

2 ].
3 

Similarly, one can show that: v2 = 0, and m1
2 = (1/2, 1/2, 0) is the 

unique minimax profile. 

22 



1

2

Networks: Lecture 15 Folk Theorems 

Minmax Payoff Lower Bounds 

Theorem 

Let σ be a (possibly mixed) Nash equilibrium of G and ui (σ) be the 
payoff to player i in equilibrium σ. Then


ui (σ) ≥ v i .


Let σ be a (possibly mixed) Nash equilibrium of G ∞ (δ) and Ui (σ) 
be the payoff to player i in equilibrium σ. Then


Ui (σ) ≥ v i .


Proof: Player i can always guarantee herself 
v i = mina [maxai ui (ai , a−i )] in the stage game and also in each stage −i � � 
of the repeated game, since v i = maxai mina−i ui (ai , a−i ) , meaning that 
she can always achieve at least this payoff against even the most 
adversarial strategies. 
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Folk Theorems


Definition 

A payoff vector v ∈ RI is strictly individually rational if vi > v i for all i . 

Theorem 

(Nash Folk Theorem) If (v1, . . . , vI ) is feasible and strictly individually 
rational, then there exists some δ < 1 such that for all δ > δ, there is a 
Nash equilibrium of G∞(δ) with payoffs (v1, · · · , vI ). 
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Proof 

Proof: 

Suppose for simplicity that there exists an action profile 
a = (a1, · · · , aI ) s.t. ui (a) = v [otherwise, we have to consider mixed 
strategies, which is a little more involved]. 

Let mi these the minimax strategy of opponents of i and mi be i ’s−i i 
best response to mi 

−i . 

Now consider the following grim trigger strategy. 

For player i : Play (a1, · · · , aI ) as long as no one deviates. If some 
player deviates, then play mi

j thereafter. 

We next check if player i can gain by deviating form this strategy 
profile. If i plays the strategy, his payoff is vi . 
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Proof (continued) 

If i deviates from the strategy in some period t, then denoting 
vi = maxa ui (a), the most that player i could get is given by: 

(1 − δ) vi + δvi + + δt−1 vi + δt v i + δt+1 v i + δt+2 v i + .· · ·	 · · · 

Hence, following the suggested strategy will be optimal if


1 
v

− 
i 

δ 
≥ 

1

1 
−
− 

δ

δ 

t 

vi + δt v i +
1 
δt

− 

+1 

δ 
v i ,


thus if 

vi	 ≥ 1 − δt vi + δt (1 − δ) v i + δt+1 v i 

= vi − δt [vi − (1 − δ)v i − δv i ]. 

The expression in the bracket is non-negative for any 

δ ≥ δ ≡ max 
v i − vi 

. 
i v i − v i 

This completes the proof. 
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Problems with Nash Folk Theorem


The Nash folk theorem states that essentially any payoff can be 
obtained as a Nash Equilibrium when players are patient enough. 
However, the corresponding strategies involve this non-forgiving 
punishments, which may be very costly for the punisher to carry out 
(i.e., they represent non-credible threats). 
This implies that the strategies used may not be subgame perfect. 
The next example illustrates this fact. 

L (q) R (1 − q) 
U 6, 6 0, −100 
D 7, 1 0, −100 

The unique NE in this game is (D, L). It can also be seen that the 
minmax payoffs are given by 

v1 = 0, v2 = 1, 

and the minmax strategy profile of player 2 is to play R. 
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Problems with the Nash Folk Theorem (continued) 

Nash Folk Theorem says that (6,6) is possible as a Nash equilibrium 
payoff of the repeated game, but the strategies suggested in the proof 
require player 2 to play R in every period following a deviation. 

While this will hurt player 1, it will hurt player 2 a lot, it seems 
unreasonable to expect her to carry out the threat. 

Our next step is to get the payoff (6, 6) in the above example, or 
more generally, the set of feasible and strictly individually rational 
payoffs as subgame perfect equilibria payoffs of the repeated game. 
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Subgame Perfect Folk Theorem 

The first subgame perfect folk theorem shows that any payoff above 
the static Nash payoffs can be sustained as a subgame perfect 
equilibrium of the repeated game. 

Theorem 

(Friedman) Let aNE be a static equilibrium of the stage game with 
payoffs eNE . For any feasible payoff v with vi > eNE for all i ∈ I, there i 
exists some δ < 1 such that for all δ > δ, there exists a subgame perfect 
equilibrium of G ∞(δ) with payoffs v. 

Proof: Simply construct the non-forgiving trigger strategies with 
punishment by the static Nash Equilibrium. Punishments are therefore 
subgame perfect. For δ sufficiently close to 1, it is better for each player i 
to obtain vi rather than deviate get a high deviation payoff for one period, 
and then obtain ei

NE forever thereafter. 
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Subgame Perfect Folk Theorem (continued) 

Theorem 

(Fudenberg and Maskin) Assume that the dimension of the set V of 
feasible payoffs is equal to the number of players I . Then, for any v ∈ V 
with vi > v i for all i , there exists a discount factor δ < 1 such that for all 
δ ≥ δ, there is a subgame perfect equilibrium of G ∞(δ) with payoffs v. 

The proof of this theorem is more difficult, but the idea is to use the 
assumption on the dimension of V to ensure that each player i can be 
singled out for punishment in the event of a deviation, and then use 
rewards and punishments for other players to ensure that the deviator 
can be held down to her minmax payoff. 
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Cooperation in Finitely-Repeated Games 

We saw that finitely-repeated games with unique stage equilibrium do 
not allow corporation or any other outcome than the repetition of this 
unique equilibrium. 
But this is no longer the case when there are multiple equilibria in the 
stage game. 
Consider the following example 

A B C 
A 3, 3 0, 4 −2, 0 
B 4, 0 1, 1 −2, 0 
C 0, −2 0, −2 −1, −1 

The stage game has two pure Nash equilibria (B , B) and (C , C ). The 
most cooperative outcome, (A, A), is not an equilibrium. 
Main result in example: in the twice repeated version of this game, 
we can support (A, A) in the first period. 
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Cooperation in Finitely-Repeated Games (continued) 

Idea: use the threat of switching to (C , C ) in order to support (A, A) 
in the first period and (B, B) in the second. 

Suppose, for simplicity, no discounting. 

If we can support (A, A) in the first period and (B, B) in the second, 
then each player will receive a payoff of 4. 

If a player deviates and plays B in the first period, then in the second 
period the opponent will play C , and thus her best response will be C 
as well, giving her -1. Thus total payoff will be 3. Therefore, 
deviation is not profitable. 
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How Do People Play Repeated Games? 

In lab experiments, there is more cooperation in prisoners’ dilemma 
games than predicted by theory. 

More interestingly, cooperation increases as the game is repeated, 
even if there is only finite rounds of repetition. 

Why? 

Most likely, in labs, people are confronted with a payoff matrix of the 
form: 

Cooperate Defect 
Cooperate 1, 1 −1, 2 

Defect 2, −1 0, 0 

Entries are monetary payoffs. But we should really have people’s full 
payoffs. 

These may differ because of social preferences. 
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Social Preferences 

Types of social preferences: 

Altruism: people receive utility from being nice to others.

Fairness: people receive utility from being fair to others.

Vindictiveness: people like to punish those deviating from “fairness”

or other accepted norms of behavior.


All of these types of social preferences seem to play some role in 
experimental results. 
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