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Network Effects


We say that there are network effects when the desired behavior of an 
individual depends on some average of the actions of others. 

Network effects with local interactions when these effects work through 
the behavior of “neighbors”. 

At this level of generality, several games we have already studied

exhibit network effects.


However, network effects become more interesting in the context of 
markets, particularly, when we study product, residential or 
technology choices. 

In what follows, we will first illustrate network effects, then provide 
several different frameworks for studying them. 
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Example without Network Effects 

Consider a society consisting of a large number of individuals (for 
example i ∈ ℐ ≡ [0, 1], though i = 1, ..., I for I large would also be 
fine). 

Each individual chooses between two products denoted by si ∈ {0, 1}. 
First suppose that each individual has preferences given by 

u (si , xi ) = [xi − c] si , 

where xi ∈ ℝ+ could be thought of as the type of the individual, 
representing his utility from taking action si = 1, and c is the cost of 
this action. 

Suppose that xi has a distribution given by G in the population (with 
continuous density g). 
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Example without Network Effects (continued) 

It is straightforward that all individuals with 

xi > c 

will take action si = 1 , and those with xi < c will take action si = 0. 

Focus on Nash equilibria. 

Then the following is immediate: 

Proposition 

In the unique equilibrium, a fraction S = 1 − G (c) of the individuals will 
choose si = 1. 

So far there are no network effects.
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Network Effects in Product Choice


Now imagine that si = 1 corresponds to choosing a new product, 
such as Blu-Ray vs. HD DVD, or signing up to a new website, such 
as MySpace or Facebook; ℐ is a set of potential friends (“network”). 
The utility of signing up is higher when a greater fraction of one’s 
friends have signed up. This is an example of a network effect. 
In the context of the environment described above, we can capture 
this by modifying each agent’s utility function to: 

u (si , xi , S) = [xi h (S) − c] si , 

where S is the fraction of the population choosing si = 1 and 
h : [0, 1] ℝ is an increasing function capturing this network effect. →
This is an aggregative game, in the sense that the payoff of each 
agent depends on some aggregate of the actions of others (here the 
average action of others). 
Equilibrium concept: again Nash equilibrium. 

In aggregative games, the analysis of Nash equilibria somewhat easier. 
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Network Effects (continued) 

With a similar argument, taking the action of all other agents and 
thus S , as given, individual i will choose si = 1 if


c

xi > . 

h (S) 

With the same argument as before, the fraction of agents choosing 
si = 1 must be ( )

c 
S = 1 − G

h (S)
. 

An equilibrium is therefore a fixed point of this equation. 

Proposition 

An equilibrium in the product choice game exists, but is not necessarily 
unique. 

Existence follows from standard arguments. We next illustrate the 
possibility of multiple equilibria. 
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Network Effects (continued) 

Suppose, for example, that h (S) = S and the distribution G is given 
by


� + � (1 + �) e−�′/x


G (x) = ,
1 + � � + �e−�′/x


where �′ > 0, 0 < � < �.


It can be verified that G (x) is indeed a probability distribution over 
ℝ+. 

Then the fixed point equation becomes 

� − �e−�S 

S = k (S) ≡ 
� + �e−�S , 

where � ≡ �′/c . 

Then the right-hand side of this equation has the logistic or the “lazy 
S” shape. 
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The Lazy S Shape
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Equilibria 

Equilibria are intersections of the k (S) curve with the 45∘ line. These 
are just standard Nash equilibria (each agent is best responding to 
what others are doing, which here is represented by the average 
fraction of other agents choosing si = 1). 

The figure shows that there are in general multiple equilibria. The 
k (S) curve typically has three intersections with the 45∘ line: one 
equilibrium at S = 0, one in the middle, and one at S = Sh . 

Network effects have therefore induced possible multiple equilibria. 
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Multiple Equilibria 

In particular,


��e−�S (� + �)

k ′ (S) = 

(� + �e−�S )
2 > 0,and 

−�2�(� + �)e−�S [� − �e−�S ]
k ′′ (S) = 

3 . 
(� + �e−�S )

This implies that k (S) is concave for S > − log (�/�) /� and convex 
otherwise, as shown in the next figure. 

Moreover, 
k (0) = 0, and k (1) < 1. 
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Multiple Equilibria in the Figure
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Multiple Equilibria (continued) 

When will there be multiple equilibria? Since S = 0 is an equilibrium, 
k (S) has the lazy S shape, k (1) < 1, and k (S) is increasing in �∗, a 
necessary and sufficient condition is that 

k (S) − S > 0 for some S , 

which will be true for � > �∗ (if � = �∗, then tangency rather than 
intersection between k (S) and the 45∘ line). 

Proposition 

In the product choice game, there will be three equilibria if and only if 
� >> �∗. 

The proof follows from the figure and the above derivation.
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Externalities and Strategic Complementarities 

At the root of the network effects is the phenomenon of externalities. 

Externalities refer to a situation in which the action of an agent has an 
effect on the payoff of others. Game theoretic situations are typically 
situations that generate externalities. In contrast, externalities are 
assumed to be absent in competitive market economies (except 
“pecuniary externalities” that do not have first-order effects). 

In this situation, we have positive externalities, since higher S 
(weakly) increases everybody else’s utility. 

More important: we also have strategic complements. Each agent is 
more willing to take the action si = 1 when others are doing so. 

Multiple equilibria are driven by strategic complementarities. Below 
we will see a more general framework for analyzing strategic 
complementarities. 
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Welfare Comparisons 

Multiple equilibria in games with strategic complementarities and 
positive externalities can generally be Pareto ranked. 

We say that a strategy profile (equilibrium) s̃ Pareto dominates 
another profile ŝ if all agents are weakly better off under s̃ than under 
ŝ, and at least one agent is strictly better off. 

More formally: 

Definition 

In a strategic form game G = ⟨ℐ, (Ai )i∈ℐ , (ui )i∈ℐ , strategy profile s̃ Pareto 
dominates profile ŝ if 

ui (s̃) ≥ ui (ŝ) for all i ∈ ℐ, and 

ui (s̃) > ui (ŝ) for some i ∈ ℐ. 
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Welfare Comparisons (continued) 

Proposition 

In the product choice game, suppose that � > �∗. Then the equilibrium 
Sh Pareto dominates equilibria Sm and S l = 0 (and Sm Pareto dominates 
S l = 0). 

Proof: 

It is sufficient to prove this proposition for the comparison of Sh and 
S l = 0. 

First observe that each agent that chooses si = 0 in the equilibrium 
S l will also do so in the equilibrium Sh . 

Conversely, there are no agents choosing si = 1 in the equilibrium S l 

(more generally, in comparing Sh and Sm, we would have that each 
agent that chooses si = 1 in Sm will also do so in Sh). 
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Proof (continued) 

Thus we only have to compare agents who choose si = 1 in the 
equilibrium Sh but not in S l . 

Note that for all of these agents choosing si = 1 in the equilibrium Sh ( ) [ ( ) ] ( )
u si = 1, xi , S

h = xi h Sh − c si ≥ 0 = u si = 0, xi , S
l . 

Since Sh > 0, this means that this inequality holds for a positive 
measure of agents, and since G is a continuous distribution, it must 
hold as a strict inequality for all but one type that is indifferent. 
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Comparative Statics 

In game-theoretic situations, we are often interested in comparative 
statics, which tell us how changes in 
parameters/environment/network structure affect behavior. 

For example, one could ask how an increase in the value of the 
product changes the fraction of agents adopting it. Or one could ask 
how an increase in the value of the product for a subset of the agents 
affects adoption. 

In games with strategic complementarities, these questions can be 
answered in a fairly tight manner. 
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Comparative Statics (continued) 

Proposition 

In the product choice game, suppose that xi increases for a fraction � > 0 
of the agents. Then Sh increases or remains the same. 

The idea of the proof: 
First, an increase in xi , all else equal, will increase si or leave it

unchanged. This is the direct effect of the change.

Second, there is the indirect effect, since now Sh increases because of 
the direct affect and thus 

[
xi h 

(
Sh

) 
− c

] 
si increases for all agents, 

other agents will be induced to also increase their actions. (Or if the 
initial change did not affect any of the agents, then there is no 
change). 
This captures the notion of strategic complementarity: each agent is 
more likely to choose the product when others do so in greater 
proportion. 
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Comparative Statics in the Figure 

This proposition can also be seen in the figure. 
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Myopic Stability and Tipping 

Consider the three equilibria and the myopic dynamic process similar 
to fictitious play induced by best response dynamics. 
Formally, best response dynamics generate a sequence of play, here 
represented by {St }∞ such that St+1 ∈ BR (St ), where BR (S) is t=0 
the set of fraction of agents taking action si = 1 that is a best 
response to that fraction being S . 
Clearly, the three equilibria satisfy S ∈ BR (S). 
In the neighborhood of the equilibrium with S = 0, if a few agents (a 
small measure � of agents) are induced to choose s = 1, this will not 
disturb the equilibrium. The best response to S = � is the fraction 
less than � as the figure shows, i.e., BR (�) < �. 
Carrying through with the best response dynamics, we will gradually 
approach S = 0. 
The next figure represents these ideas by looking at “myopic 
dynamics” 
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Figure
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Myopic Stability and Tipping (continued) 

Also in the neighborhood of the highest equilibrium, Sh, if we induce 
a small measure � of agents to change their behavior, this will have a 
(small) effect in the direction of Sh . 

For example, BR 
(
Sh 

) 
> Sh .− �

However, if the same thing is done starting in the intermediate 
equilibrium, Sm, then in response other agents will start moving in 
the direction of the small change. 

We therefore have that the middle equilibrium Sm is asymptotically 
unstable under myopic dynamics, while S l and Sh are 
asymptotically stable (recall the terminology introduced in the 
context of evolutionary dynamics). 

The next figure shows the tipping phenomenon from the “myopic 
dynamics” 
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Figure
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Tipping 

We therefore have an example of tipping: a small change 
(“perturbation”) in the neighborhood of the unstable equilibrium Sm 

will take the equilibrium in one or another direction. 

This term goes back to Thomas Schelling’s description of 
neighborhood tipping, where because of slight preferences in one 
group’s preferences about who their neighbors should be, ratio 
structure of neighborhoods can suddenly tip from all white to all 
black etc. 

Tipping is a general representation of phenomena in the presence of 
network effects, whereby some configurations are “unstable” and will 
change in response to small disturbances taking the system to a 
different (potentially far away) equilibrium. 
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Dynamic Version of Network Effects 

The above description of dynamics was based on “myopic dynamics” 
in the sense that even though we looked at the Nash equilibrium, the 
dynamics were driven by myopic best responses of individuals to what 
others are doing rather than their anticipation of what will happen in 
the future. 
This was for simplicity. We can extend the same ideas to proper 
dynamic equilibria. 
Imagine that this game is played by a sequence of (generations of) 
players, t = 0, 1, ..., (each generation represented by a set of players 
[0, 1]). 
For simplicity, suppose that preferences of generation t ≥ 1 are given 
by 

u (si ,t , xi ,t , St−1) = [xi ,t h (St−1) − c] si ,t , 

so that they care about the actions taken by the previous generation. 
Similar justification for this type of network effects. 

26 



Networks: Lectures 17 and 18 Dynamics of Network Effects 

Equilibrium Dynamics 

Now with the same reasoning as before, we have that in generation t, 
the fraction of agents choosing si = 1 will be ( )

c 
St = 1 − G

h (St−1)
. 

The dynamic equilibrium path can now be drawn using the same 
figure. 

This example also highlights the connections between myopic stability 
(from best response dynamics) in static games and dynamic 
equilibrium of related (dynamic) games in which payoff externalities 
are from past actions. 
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Figure
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Dynamic Tipping 

This figure shows the type of dynamic tipping that will happen in this 
case. When we start in the neighborhood of S = 0, say at S0 = � for 
some � small. We will then move towards S = 0. Thus S = 0 is 
asymptotically stable, now under equilibrium dynamics. 

The same applies when we are in the neighborhood of S = Sh, say 
either at S0 = Sh − � or S0 = Sh + �. In both cases, the dynamic 
equilibrium path will move towards S0 = Sh, so that Sh is also 
asymptotically stable. 

In contrast, suppose we now start at S0 = Sm . Now we have a 
tipping phenomenon. If we disturb the equilibrium with a small 
perturbation, we will move in the direction of the perturbation, if we 
have S1 = Sm − �, then St → 0, and if we have S1 = Sm + �, then 
St Sh . This is true regardless of how small � is.→ 
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History vs. Expectations in Games with Network Effects 

The above equilibrium path was derived assuming a backward-looking 
payoff function u (si , xi , t) = xi si h (St−1) − c , so that only history 
mattered. 

In general, tipping like phenomena imply that changes in 
expectations could have a large role. In the static game, which 
equilibrium will emerge is purely due to “expectations”— or beliefs. 

Now imagine a more general version of the payoff function, whereby 

u (si ,t , xi ,t , St , St−1) = xi ,t [�h (St−1) + (1 − �)h (St )] si ,t − c , 

so that both the past and the present matter. Now clearly, in 
generation t, the fraction of agents choosing si = 1 will be 

c 
St = 1 − G 

(
�h (St−1) + (1 − �)h (St )

) 

. 
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History vs. Expectations in Games with Network Effects 

If � is large, history matters a lot, and the dynamic equilibrium similar 
to the above case. 

In particular, “no jump from one equilibrium to another”. 

If � is small, then expectations matter a lot, and one could start in 
the neighborhood of S = Sh and jump to S = 0. 

Question: are such jumps possible along the equilibrium path? 
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Network Effects with Local Interactions 

The term network effects originates from the fact that what 
individuals typically care about is not averages, but what their 
neighbors do. 

This can be incorporated into models of network interactions and 
leads to richer dynamics, and to phenomena such as domino effects. 

More generally, so far we have looked at aggregative games, where 
payoff externalities are from the aggregate of others’s action (such as 
the average). 

More generally, one could look at graphical games, where payoff 
externalities are from the average behavior of “neighbors” in a social 
network (directed or undirected graph). 

Here we provide a simple example to illustrate the issues. 
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Domino Effects on the Circle


As a simple illustration, consider a structure of local interactions 
represented by I agents located around a circle, so that agent i is to 
the right of i − 1 and 1 is to the right of I . 
Suppose that the utility is now given by 

u (si , xi , si−1) = [xi h (si−1) − c] si , 

where for i = 1, i − 1 is, by convention, set to I . 
First suppose that xi = 1 for all i , c = 1, h (0) = 2/3 and h (1) = 2. 
Then it can be verified that there are two pure strategy equilibria 
here, one in which all agents choose si = 0 and one in which they all 
choose si = 1. 
Can these equilibria be Pareto “ranked”? 
In this example, the equilibrium with si = 1 once again Pareto 
dominates the equilibrium with si = 0: all agents have strictly higher 
utility in equilibrium with si = 1. 
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Domino Effects on the Circle (continued) 

To illustrate the possibility of domino effects, now suppose that we 
start with the equilibrium with si = 0 for all i . Now one of the agents, 
say i = 1, is hit by a shock that increases x1 from 1 to x1 = 2. 

Then it can be verified that the unique equilibrium becomes si = 1. 

The domino effects arise from the fact that once i = 1 chooses 
si = 1, then i = 2 would also like to choose si = 1, and so on. 

Alternatively, we can say that the behavior si = 1 is contagious. We 
will see more general model of contagion below. 

Conversely, starting from the equilibrium with si = 1, a shock to one 
of the agents, say again i = 1, so that x1 = 0 will start the reverse 
domino effects/contagion, and all agents will switch to si = 0. 
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Dynamic Domino Effects 

With the same trick we used in the model where externalities were 
from aggregate behavior, we can also turn the domino effects into 
dynamic effects. ⌊ ⌋ 
In particular, suppose that individual i moves at times t

I + i (thus 
once every I periods). Also assume that I is sufficiently large and 
discounting is sufficiently small so that each agent cares about 
current actions. 
Suppose utility of agent i acting at time t is 

u (si ,t , xi , si−1,t−1) = [xi h (si−1,t−1) − c] si ,t . 

Suppose we start an equilibrium with si ,t = 0 for all i . 
Now a shock to player i that makes it switch from si ,t−I = 0 to 
si ,t = 1 will create a dynamic domino effect, whereby in each 
subsequent period (until all agents are reached) one more agent will 
switch to si = 1. 
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Network Effects in Residential Choices


Schelling’s original tipping model was formulated in the context of 
residential choices by whites and blacks. 

The model he proposed is quite complex (similar to the Ising model in 
physics), and Schelling illustrated that rich behavior can arise. 

In general, network effects are possible in residential choices not only 
because of racial concerns, but because of a host of different types of 
externalities. 

An important class of externalities are related to peer effects, the 
fact that children are affected by their peers. 

Then parents who care about children’s education will also care about 
their children’s peers. 
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Network Effects in Residential Choices (continued) 

We now discuss a model due to Benabou (1992) “The Workings of a 
City”. 

The model will illustrate both network effects in residential choices 
and also the idea of symmetry breaking, that is, the notion that 
even with symmetric and homogeneous populations, the equilibrium 
may involve asymmetries and iniquities. 

All agents are assumed to be ex ante homogeneous, and will 
ultimately end up either low skill or high skill. 

Utility of agent i is assumed to be 

U i i i i = w − c − r 

where w is the wage, c is the cost of education, which is necessary to 
become both low skill or high skill, and r is rent. 
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Network Effects in Residential Choices (continued) 

The cost of education is assumed to depend on the fraction of the 
agents in the neighborhood, denoted by x , who become high skill. In 
particular, we have cH (x) and cL (x) as the costs of becoming high 
skill and low skill. 

Both costs are decreasing in x , meaning that when there are more 
individuals acquiring high skill, becoming high skill is cheaper 
(positive peer group effects). 

In addition,

cH (x) > cL (x)


so that becoming high skill is always more expensive. 
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Network Effects in Residential Choices (continued) 

More importantly, the effect of increase in the fraction of high skill 
individuals in the neighborhood is bigger on the cost of becoming 
high skill. 

cH 
′ (x) < cL 

′ (x) , 
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Network Effects in Residential Choices (continued) 

Since all agents are ex ante identical, in equilibrium we must have 

U (L) = U (H) 

that is, the utility of becoming high skill and low skill must be the 
same. 

Assume that the labor market in the economy is global, and takes the 
constant returns to scale form F (H, L). 

This implies that if the ratio of high to low skill workers, H/L, is high, 
then wH /wL, the wage of a high skill worker relative to a low skill 
workers, will be low. 

This will guarantee that typically not all workers in the city will be 
high or low skill. There will be a mixture. 
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Network Effects in Residential Choices (continued) 

Another important implication is that irrespective of where a worker 
obtains his or her education, he will receive the same wage as a 
function of his skill level. 

Also assume that there are two neighborhoods of fixed and equal size, 
and individuals will compete in the housing market to locate in one 
neighborhood or the other. 

There are two types of equilibria:


Integrated city equilibrium, where in both neighborhoods there is a

fraction x̂ of individual obtaining high education.

]d city equilibrium, where one of the neighborhoods is homogeneous.

For example, we could have a situation where one neighborhood has

x = 1 and the other has x̃ < 1, or one neighborhood has x = 0 and the 
other has x̄ > 0. 
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Network Effects in Residential Choices (continued) 

Figure: Integrated City 
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Network Effects in Residential Choices (continued) 

Figure: Segregated Cities 
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Network Effects in Residential Choices (continued) 

The important observation here is that only segregated city equilibria 
are asymptotically stable (under myopic dynamics). 
To see this consider an integrated city equilibrium, and imagine 
relocating a fraction � of the high-skill individuals (that is individuals 
getting high skills) from neighborhood 1 to neighborhood 2. 
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Network Effects in Residential Choices (continued) 

This will reduce the cost of education in neighborhood 2, both for 
high and low skill individuals. 

But by assumption, it reduces it more for high skill individuals, so all 
high skill individuals now will pay higher rents to be in that city, and 
they will outbid low-skill individuals, taking the economy toward the 
segregated city equilibrium. 

This illustrates symmetry breaking. 
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Network Effects in Residential Choices (continued) 

In contrast, the segregated city equilibrium is always asymptotically 
stable. 

Proposition 

In the residential choice game, there always exists an integrated city and a 
segregated city equilibrium. The integrated city equilibrium is always 
asymptotically unstable and segregated city equilibria are asymptotically 
stable. 
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Network Effects in Residential Choices (continued) 

Thus segregation arises as the equilibrium (stable equilibrium) 
outcome, because of “complementarities”. However, in this case, we 
do not have a game of strategic complementarities because the 
population must consist of a mixture of high and low skill workers. 

In fact, it can be verified that in this case, either one of the three 
different types of equilibria could Pareto dominate others. 

This is because greater concentration of skilled workers in particular 
neighborhood reduces the costs of education both for high and low 
skill workers. 
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Network Effects in the Labor Market


An idea going back to Marshall’s Principles of Economics is that 
geographic concentration of firms is related to the geographic 
concentration of certain types of skills. But why would skilled workers 
be in one place vs. another? 

Here we will discuss a model based on Acemoglu (1997) “Training 
and Innovation in an Imperfect Labor Market”. 

Consider the following two-period model. There is population N of 
workers and population N of firms (where N is large). 

Initially, each worker is matched with a firm. The firm can produce a 
baseliner level of output y0. 
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Network Effects in the Labor Market (continued) 

In addition, it can adopt a new technology at cost k and also train its 
employee at cost c . The return to the technology is � if there is a 
trained worker to operate it (so that the firm produces y0 + �). 
Without a trained worker, the new technology has no additional 
return. Training is also not useful without the new technology. 
Also assume that there is no possibility of additional technology 
adoption or training in the second date and that there is no 
discounting. 
Suppose that wages are given by a fraction � ∈ (0, 1) of total output. 
Both training and the new technology can be used in the second 
period as well. 
Finally, with probability q ∈ [0, 1), the worker and the firm separate 
(they are no longer a “good match” together), and they find a new 
partner (since there are the same number of firms and workers to 
start with, each separate side finds a partner). 
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Network Effects in the Labor Market (continued) 

First assume that q = 0. Then we have the following result: 

Proposition 

In the technology adoption game, suppose that 

k + c 
� < 1 − , (∗)

2� 

then the unique equilibrium involves all firms adopting the new technology 
and training their employees. 
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Network Effects in the Labor Market (continued) 

Why is this true? 

Clearly, training by itself or adoption of the new technology by itself 
cannot be optimal. 

If the firm does not adopt a new technology and train the employee, 
then it has total profits


2 (1 − �) y0.


If it adopts the new technology and trains its employee, then has 
profits


2 (1 − �) (y0 + �) − k − c ,


which is strictly greater than 2 (1 − �) y0 under (∗) 
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Network Effects in the Labor Market (continued) 

Now suppose that q > 0. In this case, suppose that no other firm 
adopts the technology and trains their employee. Then expected 
profits from not training are still 2 (1 − �) y0, while the profits from 
adoption of technology are 

(1 − �) [2y0 + � + (1 − q) �] − k − c . 

Proposition 

In the technology adoption game, suppose that 

k + c k + c 
1 − 

(2 − q) � 
< � < 1 − 

2� 
, (∗∗) 

then there exist an equilibrium in which all firms adopt the new technology 
and train their employees and another equilibrium in which no firm adopts 
the new technology or trains their employees. The equilibrium with 
technology adoption Pareto dominates the equilibrium without. 
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Network Effects in the Labor Market (continued) 

This result is straightforward. Under (∗∗), if no other firm adopts, 
adopting the new technology and training is not profitable. 

In contrast, if all other firms are expected to adopt the new 
technology, then (∗∗) implies that adopting new technology and 
offering training to one’s employee is a (strict) best response. 

There are therefore 2 pure strategy (symmetric) equilibria, one in 
which all firms adopt the new technology and train their workers, and 
another one in which all of them do not. 

With the same reasoning as above, the equilibrium with adoption is 
Pareto dominant (in this equilibrium, all firms have the option of not 
adopting, and strictly prefer to adopt). 

53 



Networks: Lectures 17 and 18 Network Effects in the Labor Market 

Network Effects in the Labor Market (continued) 

Intuitively, the multiplicity of equilibria is because in one case firms 
expect to be able to fill their vacancies with qualified workers and thus 
are more willing to adopt new technologies complementary to the 
workers, whereas in the other case they do not expect such qualified 
workers and adopting the new technology is not sufficiently profitable. 
These expectations are self-fulfilling because when all firms adopt the 
new technology they generate (by investing in their employees) a 
qualified workforce. 
Now imagine an extension, with two regions, one in which all firms 
that adopt the new technology and the other one where all existing 
firms do not. Suppose that a firm that wishes to adopt a new 
technology will choose its location. Then it will locate together with 
other adopters, even if residential rents are higher in that area. In 
contrast, those wishing not to adopt can locate with the non-adopters. 
This captures some of the logic of technology clusters such as Route 
128 or the Silicon Valley. 
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Supermodular Games 

So far we have studied several examples of games with “network 
effects” or strategic complementarities. 
These are special instances of more general phenomena. 
We can get a sense of the general results in such games by

considering the class of games called supermodular games.

Supermodular games ≡ games with strategic complementarities 
Informally, this means that the marginal return to increasing a player’s 
strategy increases in the other players’ strategies. 

Implication best response of a player is a nondecreasing function of ⇒
other players’ strategies 

In addition to unifying what we have seen before, the analysis here 
will show that these games always have pure strategy equilibria 
(without assuming concavity of payoff functions), lead to similar 
predictions under different equilibrium concepts, have nice stability 
properties under myopic or best response dynamics, and lead to 
general comparative statics results. 
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Monotonicity of Optimal Solutions 

The machinery needed to study supermodular games is lattice theory 
and monotonicity results in lattice programming. 
We first study the monotonicity properties of optimal solutions of 
parametric optimization problems. Considered a problem 

x(t) ∈ arg max f (x , t), 
x∈X 

where f : X × T → ℝ, X ⊂ ℝ, and T ⊂ ℝ (or more generally some 
partially ordered set). [Throughout the symbol ⊂ stands for “is 
included in and possibly equal to,” i.e., equivalent to ⊆]. 
We will focus on T ⊂ ℝK with the usual vector order, i.e., for some 
x , y ∈ T , x ≥ y if and only if xi ≥ yi for all i = 1, . . . , k. 

Theory extends to general lattices; lattice ≈ a set that has least and 
greatest elements. 

We are interested in conditions under which we can establish that 
x(t) is a nondecreasing function of t. 
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Increasing Differences 

Key property: Increasing differences. 

Definition 

Let X ⊂ ℝ and T ⊂ ℝ. A function f : X × T → ℝ has increasing 
differences in (x , t) if for all x ′ ≥ x and t ′ ≥ t, we have 

f (x ′ , t ′) − f (x , t ′) ≥ f (x ′ , t) − f (x , t). 

Intuitively: incremental gain to choosing a higher x (i.e., x ′ rather 
than x) is greater when t is higher, i.e., f (x ′ , t) − f (x , t) is 
nondecreasing in t. 

The previous definition gives an abstract characterization. The 
following result makes checking increasing differences easy in many 
cases. 
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Increasing Differences 

Lemma 

Let X ⊂ ℝ and T ⊂ ℝk for some k. Let f : X × T → ℝ be a twice 
continuously differentiable function. Then, the following statements are 
equivalent: 

The function f has increasing differences in (x , t).


For all t ′ ≥ t and all x ∈ X , we have


∂f (x , t ′) ∂f (x , t) 
. 

∂x 
≥ 

∂x 

For all x ∈ X, t ∈ T, and all i = 1, . . . , k, we have 

∂2f (x , t) ≥ 0. 
∂x∂ti 
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Increasing Differences 

Increasing differences closely linked to strategic complementarities. 

This lemma also shows that when the relevant functions are 
differentiable, strategic complementarities are the same as “positive 
cross partial derivatives”. 

In general check strategic complementarity through this condition. 
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Supermodular Games 

Definition 

The strategic game ⟨ℐ, (Si ), (ui )⟩ is a supermodular game if for all i ∈ ℐ: 

Si is a compact subset of ℝ [or more generally Si is a complete lattice 
in ℝmi ]; 

ui is continuous in si , continuous in s−i [or more generally upper 
semi-continuity suffices]; 

ui has increasing differences in (si , s−i ) [or more generally ui is 
supermodular in (si , s−i ), which is an extension of the property of 
increasing differences to games with multi-dimensional strategy 
spaces]. 
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Network Effects in Supermodular Games 

Consider a generalization of the product choice game discussed in the 
previous literature. 

A set ℐ of users can use one of two products X and Y (e.g., Blu-ray 
and HD DVD). 

Bi (J, k) denotes payoff to i when a subset J of users use technology 
k and i ∈ J 

There exists a positive externality if 

Bi (J, k) ≤ Bi (J
′ , k), when J ⊂ J ′ , 

i.e., player i better off if more users use the same technology as him. 
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Network Effects in Supermodular Games (continued)


This leads to a strategic form game with actions Si = {X , Y }
Given s ∈ S , let X (s) = {i ∈ ℐ ∣ si = X }, Y (s) = {i ∈ ℐ ∣ si = Y }. 
We write X (s) ≥ Y (s) if the size of the first set is greater than the 
second. 

Then we have a supermodular game with payoff function { 
Bi (X (s), X ) if si = X , 

ui (si , s−i ) = 
Bi (Y (s), Y ) if si = Y 

It can be verified that increasing differences are satisfied. 
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Cournot As a Supermodular Game with Change of Order 

Consider Cournot duopoly model. Two firms choose the quantity they

produce qi ∈ [0, ∞).


Let P(Q) with Q = qi + qj denote the inverse demand (price)

function. Payoff function of each firm is

ui (qi , qj ) = qi P(qi + qj ) − cqi .


Assume P ′(Q) + qi P ′′(Q) ≤ 0 (firm i ’s marginal revenue decreasing

in qj ).


We can now verify that the payoff functions of the transformed game

defined by s1 = q1, s2 = −q2 have increasing differences in (s1, s2).


Alternatively, Cournot can be modeled as a game of strategic

substitutes. In such games, there are “decreasing differences”

instead of increasing differences. Important class of games, but more

difficult to analyze not as salient in the analysis of “network effects”.

Hence we will not discuss those in this course.
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Monotonicity of Optimal Solutions 

Key theorem about monotonicity of optimal solutions: 

Theorem 

(Topkis) Let X ⊂ ℝ be a compact set and T ⊂ ℝ. Assume that the 
function f : X × T → ℝ is continuous [or upper semicontinuous] in x for 
all t ∈ T and has increasing differences in (x , t). Define 
x(t) ≡ arg maxx∈X f (x , t). Then, we have: 

For all t ∈ T, x(t) is nonempty and has a greatest and least element,

denoted by x̄(t) and x(t) respectively.


For all t ′ ≥ t, we have x̄(t ′) ≥ x̄(t) and x(t ′) ≥ x(t).


Summary: if f has increasing differences, the set of optimal solutions 
x(t) is non-decreasing in the sense that the largest and the smallest 
selections are non-decreasing. 
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Existence Problems 

How do we show existence of Nash equilibria? 

Theorem 

(Tarski) Let S be a compact sublattice of ℝk and f : S S be an →
increasing function (i.e., f (x) ≤ f (y) if x ≤ y). Then, the set of fixed 
points of f , denoted by E, is nonempty. 

Line of attack: Apply Topkis’s Monotonicity Theorem to show that 
best response correspondences are increasing and then apply Tarski’s 
Theorem to best response correspondences to show existence of pure 
strategy Nash equilibria and their properties. 
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Tarski’s Fixed Point Theorem
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Existence of a Pure Nash Equilibrium 

Existence of pure strategy Nash equilibria will then follow from 
Tarski’s fixed point theorem: 

Theorem 

Assume ⟨ℐ, (Si ), (ui )⟩ is a supermodular game. Let 

Bi (s−i ) = arg max ui (si , s−i ). 
si ∈Si 

Then: 

Bi (s−i ) has a greatest and least element, denoted by B̄i (s−i ) and 
Bi (s−i ). 

If s ′ −i , then B̄i (s ′ B̄i (s−i ) and Bi (s 
′ ) ≥ Bi (s−i ).−i ≥ s −i ) ≥ −i 

Follows immediately from Topkis’s Monotonicity Theorem.
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Existence of a Pure Nash Equilibrium 

Theorem 

(Topkis) Let ⟨ℐ, (Si ), (ui )⟩ be a supermodular game. Then the set of pure 
strategy Nash equilibria is nonempty and has greatest and least elements s̄ 
and s. 

Idea of proof: Apply Tarski’s fixed point theorem to best response 
correspondences. 

Existence of greatest and least elements common with games with 
network effects that we have seen above. 
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Elimination of Strictly Dominated Strategies 

Theorem 

(Milgrom and Roberts) Let ⟨ℐ, (Si ), (ui )⟩ be a supermodular game. 
Then the set of strategies that survive iterated strict dominance (i.e., 
iterated elimination of strictly dominated strategies) has greatest and least 
elements s̄ and s, coinciding with the greatest and the least pure strategy 
Nash Equilibria. 

Proof idea: Start from the largest or smallest strategy profile and 
iterate the best-response mapping. 
Same proof idea also implies: 

Theorem 

(Milgrom and Roberts) Let ⟨ℐ, (Si ), (ui )⟩ be a supermodular game. 
Starting with a strategy profile greater than the greatest equilibrium s̄ , 
best response dynamics converge to s̄ , and starting with a strategy profile 
less than the least equilibrium, s, best response dynamics converge to s. 
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Comparative Statics in Supermodular Games 

A different approach to understand the structure of Nash equilibria. 

Theorem 

(Topkis, Milgrom and Roberts) Let ⟨ℐ, (Si ), (ui )⟩ be a supermodular 
game. Consider a change in ui for a subset ℐ ′ ⊂ ℐ such that the marginal 
return to si increases for all i ∈ ℐ ′ . Then the greatest and least equilibria s̄ 
and s both increase (or do not change). 

Idea: the same as in the games with network effects studied above. 
The change in the utility function has a direct effect which is to 
increase the strategy of the affected players. Then the indirect effect 
working through strategic complementarities reinforces this. 
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Welfare in Supermodular Games 

Theorem 

Let ⟨ℐ, (Si ), (ui )⟩ be a supermodular game and suppose that it also 
exhibits positive externalities (each ui is nondecreasing in s−i ). Then for 
any two equilibrium profiles s ′′ , s ′ such that s ′′ ≥ s ′ (and s ′′ =∕ s ′), s ′′ 

weakly Pareto dominates s ′ . If ui is strictly increasing in s−i for some i , 
then s ′′ Pareto dominates s ′ . 

The proof follows immediately from positive externalities (since in the 
profile s ′′ each player could have chosen the strategy under s ′). 
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Contagion of Behavior over a Network 

We now discuss a game theoretic model of contagion. 
We will consider a graphical game, allowing for rich local

interactions based on Morris (2000) “Contagion”.

Consider a society represented by an undirected connected graph 
G = (V , E ). Each agent i ∈ V chooses si = 0 or 1. 
Suppose preferences are such that each agent (strictly) prefers to 
choose si = 0 if less than a fraction q of her neighbors choose s = 1. 
She prefers si = 1 if greater than a fraction q ∈ (0, 1) of her 
neighbors choose si = 1. This will result, for example, from a 
“coordination game”. 
Clearly, all agents choosing si = 0 and all agents choosing si = 1 are 
equilibria. 
The question is whether there are other equilibria, and if so, do such 
equilibria exhibit “contagious” behavior in the sense that change by 
one agent from si = 0 to si = 1 induce a large number of others to 
also switch? 
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Contagion of Behavior over a Network (continued) 

Let the neighborhood of agent i ∈ V in G be denoted by Ni (G ). 

Let S = {i ∈ V : si = 1}, that is, the set of agents playing si = 1 (in 
this specific equilibrium we have fixed). 

Define S to be r -cohesive with respect to the network G if { }
max min 

∣Ni (G ) ∩ S ∣ 
= r . 

i∈S ∣Ni (G )∣ 

The denominator ∣Ni (G )∣ is the degree of agent (node) i and 
∣Ni (G ) ∩ S ∣ is the number of edges from i that are also in S (i.e., 
playing si = 1). 

This definition implies that r is the maximum real number such that 
all members of S have at least a fraction r of their neighbors within S . 
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Figure
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Contagion of Behavior over a Network (continued) 

Proposition 

There exists a pure strategy equilibrium with ∅ < S < V if and only if S is 
q- cohesive and V ∖S is (1 − q)-cohesive. 

Corollary 

If there does not exist any S (∅ < S < V ) such that S is q-cohesive and 
V ∖S is (1 − q)-cohesive, then the only pure strategy equilibria are those 
involving S = ∅ and S = V . 

Both results follow immediately from the description of the game, 
definition of r -cohesiveness, and the observation that for some V ∖S 
to include all players playing s = 0, none of them must have a 
fraction greater than or equal to q playing s = 1, and thus V ∖S must 
be (1 − q)-cohesive. 
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Contagion 

Now start from an equilibrium in which ∅ < S < V , and “infect”

some nodes that are not in S so that they also play s = 1.


We ask whether this will start a contagion in the sense that we start 
with S ′ ⊃ S (that is S plus some additional nodes), and then follow 
best response dynamics, until convergence. 

We say that there is contagion if this process converges to all players 
playing s = 1. 

The following result is immediate. 
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Contagion (continued) 

Proposition 

Contagion will result from S ′ ⊃ S if and only if for any S ′′ ⊃ S ′ we have 
that V ∖S ′′ is not (1 − q)-cohesive. 

Proof: (Necessity) 

If there exists S ′′ ⊃ S ′ such that V ∖S ′′ is (1 − q)-cohesive, then every 
agent in S ′′ will play s = 0 at each iteration of the best resource 
dynamics, and thus will never switch to s = 1. 
Therefore the stated condition is necessary for contagion. 
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Proof (continued) 

Proof: (Sufficiency) 

To see that it is sufficient, note that this implies S ′′ = S ′ is not 
(1 − q)-cohesive. 
Therefore, in the first iteration, we will move to some S1 

′ ⊃ S ′ . 
The condition in the proposition implies that this is not 
(1 − q)-cohesive, and thus some additional agents will switch to s = 1, 
and we end up with S2 

′ ⊃ S1 
′ ⊃ S ′ . The condition implies that this is 

not (1 − q)-cohesive, and thus the process continues. This implies that 
{Sn′ } is an increasing sequence of sets, and thus must converge, and 
can only converge to V . Therefore, in the limit of the best response 
dynamics, all agents will play s = 1, and hence we have contagion, 
completing the proof. 

However, in practice, difficult to check whether all subsets of V are q-
or (1 − q)-cohesive. 
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