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Networks: Lectures 20-22 Introduction 

Outline 

Incomplete information. 

Bayes rule and Bayesian inference. 

Bayesian Nash Equilibria. 

Auctions. 

Extensive form games of incomplete information. 

Perfect Bayesian (Nash) Equilibria. 

Introduction to social learning and herding. 

Reading: 

Osborne, Chapter 9. 

EK, Chapter 16. 
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Networks: Lectures 20-22 Incomplete Information 

Incomplete Information 

In many game theoretic situations, one agent is unsure about the 
preferences or intentions of others. 

Incomplete information introduces additional strategic interactions 
and also raises questions related to “learning”. 

Examples: 

Bargaining (how much the other party is willing to pay is generally 
unknown to you) 
Auctions (how much should you be for an object that you want, 
knowing that others will also compete against you?) 
Market competition (firms generally do not know the exact cost of 
their competitors) 
Signaling games (how should you infer the information of others from 
the signals they send) 
Social learning (how can you leverage the decisions of others in order 
to make better decisions) 
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Networks: Lectures 20-22 Incomplete Information 

Example: Incomplete Information Battle of the Sexes
 

Recall the battle of the sexes game, which was a complete
 
information “coordination” game.
 
Both parties want to meet, but they have different preferences on 
“Ballet” and “Football”. 

B F 
B (2, 1) (0, 0) 
F (0, 0) (1, 2) 

In this game there are two pure strategy equilibria (one of them 
better for player 1 and the other one better for player 2), and a mixed 
strategy equilibrium. 
Now imagine that player 1 does not know whether player 2 wishes to 
meet or wishes to avoid player 1. Therefore, this is a situation of 
incomplete information—also sometimes called asymmetric 
information. 
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Networks: Lectures 20-22 Incomplete Information 

Example (continued) 

We represent this by thinking of player 2 having two different types, 
one type that wishes to meet player 1 and the other wishes to avoid 
him. 

More explicitly, suppose that these two types have probability 1/2 
each. Then the game takes the form one of the following two with 
probability 1/2. 

B F 
B (2, 1) (0, 0) 
F (0, 0) (1, 2) 

B F 
B (2, 0) (0, 2) 
F (0, 1) (1, 0) 

Crucially, player 2 knows which game it is (she knows the state of 
the world), but player 1 does not. 

What are strategies in this game? 
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Networks: Lectures 20-22 Incomplete Information 

Example (continued) 

Most importantly, from player 1’s point of view, player 2 has two 
possible types (or equivalently, the world has two possible states each 
with 1/2 probability and only player 2 knows the actual state). 

How do we reason about equilibria here? 

Idea: Use Nash Equilibrium concept in an expanded game, where 
each different type of player 2 has a different strategy 

Or equivalently, form conjectures about other player’s actions in each 
state and act optimally given these conjectures. 
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Networks: Lectures 20-22 Incomplete Information 

Example (continued) 

Let us consider the following strategy profile (B, (B , F )), which 
means that player 1 will play B, and while in state 1, player 2 will also 
play B (when she wants to meet player 1) and in state 2, player 2 will 
play F (when she wants to avoid player 1). 
Clearly, given the play of B by player 1, the strategy of player 2 is a 
best response. 
Let us now check that player 2 is also playing a best response. 
Since both states are equally likely, the expected payoff of player 2 is 

1 1
�[B, (B , F )] = 

2 
× 2 + 

2 
× 0 = 1. 

If, instead, he deviates and plays F , his expected payoff is


1 1 1

�[F , (B , F )] = 

2 
× 0 + 

2 
× 1 = . 

2 
Therefore, the strategy profile (B , (B , F )) is a (Bayesian) Nash 
equilibrium. 
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Networks: Lectures 20-22 Incomplete Information 

Example (continued) 

Interestingly, meeting at Football, which is the preferable outcome for 
player 2 is no longer a Nash equilibrium. Why not? 

Suppose that the two players will meet at Football when they want to 
meet. Then the relevant strategy profile is (F , (F , B)) and 

1 1 1
�[F , (F , B)] = 

2 
× 1 + 

2 
× 0 = . 

2 

If, instead, player 1 deviates and plays B, his expected payoff is 

1 1
�[B, (F , B)] = 

2 
× 0 + 

2 
× 2 = 1. 

Therefore, the strategy profile (F , (F , B)) is not a (Bayesian) Nash 
equilibrium. 
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Networks: Lectures 20-22 Bayesian Games 

Bayesian Games 

More formally, we can define Bayesian games, or “incomplete 
information games” as follows. 

Definition 

A Bayesian game consists of 

A set of players ℐ; 
A set of actions (pure strategies) for each player i : Si ; 

A set of types for each player i : �i ∈ Θi ; 

A payoff function for each player i : ui (s1, . . . , sI , �1, . . . , �I ); 

A (joint) probability distribution p(�1, . . . , �I ) over types (or 
P(�1, . . . , �I ) when types are not finite). 

More generally, one could also allow for a signal for each player, so 
that the signal is correlated with the underlying type vector. 
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Networks: Lectures 20-22 Bayesian Games 

Bayesian Games (continued) 

Importantly, throughout in Bayesian games, the strategy spaces, the 
payoff functions, possible types, and the prior probability distribution 
are assumed to be common knowledge. 

Very strong assumption. 
But very convenient, because any private information is included in the 
description of the type and others can form beliefs about this type and 
each player understands others’ beliefs about his or her own type, and 
so on, and so on. 

Definition 

A (pure) strategy for player i is a map si : Θi → Si prescribing an action 
for each possible type of player i . 
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Networks: Lectures 20-22 Bayesian Games 

Bayesian Games (continued) 

Recall that player types are drawn from some prior probability 
distribution p(�1, . . . , �I ). 

Given p(�1, . . . , �I ) we can compute the conditional distribution 
p(�−i ∣ �i ) using Bayes rule. 

Hence the label “Bayesian games”. 
Equivalently, when types are not finite, we can compute the conditional 
distribution P(�−i ∣ �i ) given P(�1, . . . , �I ). 

Player i knows her own type and evaluates her expected payoffs 
according to the the conditional distribution p(�−i ∣ �i ), where 
�−i = (�1, . . . , �i−1, �i+1, . . . , �I ). 
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Networks: Lectures 20-22 Bayesian Games 

Bayesian Games (continued) 

Since the payoff functions, possible types, and the prior probability 
distribution are common knowledge, we can compute expected 
payoffs of player i of type �i as ( ) ∑ 

U si 
′ , s−i ( ), �i = p(�−i ∣ �i )ui (si ′ , s−i (�−i ), �i , �−i )⋅ 

�−i 

when types are finite 

∫ 
= ui (si 

′ , s−i (�−i ), �i , �−i )P(d�−i ∣ �i ) 

when types are not finite. 
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Networks: Lectures 20-22 Bayesian Games 

Bayes Rule 

Quick recap on Bayes rule. 

Let Pr (A) and Pr (B) denote, respectively, the probabilities of events 
A and B; Pr (B ∣ A) and Pr (A ∩ B), conditional probabilities (one 
event conditional on the other one), and Pr (A ∩ B) be the probability 
that both events happen (are true) simultaneously. 

Then Bayes rule states that 

Pr (A ∩ B)
Pr (A ∣ B) = 

Pr (B) 
. (Bayes I) 

Intuitively, this is the probability that A is true given that B is true.
 

When the two events are independent, then
 
Pr (B ∩ A) = Pr (A) × Pr (B), and in this case, Pr (A ∣ B) = Pr (A).
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Networks: Lectures 20-22 Bayesian Games 

Bayes Rule (continued) 

Bayes rule also enables us to express conditional probabilities in terms 
of each other. Recalling that the probability that A is not true is 
1 − Pr (A), and denoting the event that A is not true by Ac (for A 
“complement”), so that Pr (Ac ) = 1 − Pr (A), we also have 

Pr (A) × Pr (B A)
Pr (A ∣ B) = 

Pr (A) × Pr (B ∣ A) + Pr (Ac

∣ 
) × Pr (B ∣ Ac ) 

. (Bayes II) 

This equation directly follows from (Bayes I) by noting that 

Pr (B) = Pr (A) × Pr (B ∣ A) + Pr (Ac ) × Pr (B ∣ Ac ) , 

and again from (Bayes I) 

Pr (A ∩ B) = Pr (A) × Pr (B ∣ A) . 
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Networks: Lectures 20-22 Bayesian Games 

Bayes Rule 

More generally, for a finite or countable partition {Aj } n of the event j=1 
space, for each j 

Pr (Aj B) = ∑ 
Pr (Aj ) × Pr (B ∣ Aj ) 

.n∣ 
Pr (Ai ) × Pr (B ∣ Ai )i=1 

For continuous probability distributions, the same equation is true 
with densities 

f 
(
A′ ∣ B

) 
= ∫ 

f (A′) × f (B ∣ A′) 
. 

f (B ∣ A) × f (A) dA 
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Networks: Lectures 20-22 Bayesian Games 

Bayesian Nash Equilibria 

Definition 

(Bayesian Nash Equilibrium) The strategy profile s(⋅) is a (pure strategy) 
Bayesian Nash equilibrium if for all i ∈ ℐ and for all �i ∈ Θi , we have that ∑ 

si (�i ) ∈ arg max p(� �i )ui (si 
′ , s −i ), �i , � 

si 
′∈Si 

�−i 

−i ∣ −i (� −i ), 

or in the non-finite case, ∫ 
si (�i ) ∈ arg max ui (si 

′ , s −i ), �i , � �i ) . 
si 
′∈Si 

−i (� −i )P(d�−i ∣ 

Hence a Bayesian Nash equilibrium is a Nash equilibrium of the 
“expanded game” in which each player i ’s space of pure strategies is 
the set of maps from Θi to Si . 
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Networks: Lectures 20-22 Bayesian Games 

Existence of Bayesian Nash Equilibria 

Theorem 

Consider a finite incomplete information (Bayesian) game. Then a mixed 
strategy Bayesian Nash equilibrium exists. 

Theorem 

Consider a Bayesian game with continuous strategy spaces and continuous 
types. If strategy sets and type sets are compact, payoff functions are 
continuous and concave in own strategies, then a pure strategy Bayesian 
Nash equilibrium exists. 

The ideas underlying these theorems and proofs are identical to those 
for the existence of equilibria in (complete information) strategic form 
games. 
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Networks: Lectures 20-22 Bayesian Games 

Example: Incomplete Information Cournot 

Suppose that two firms both produce at constant marginal cost. 
Demand is given by P (Q) as in the usual Cournot game. 
Firm 1 has marginal cost equal to C (and this is common
 
knowledge).
 
Firm 2’s marginal cost is private information. It is equal to CL with 
probability � and to CH with probability (1 − �), where CL < CH . 

This game has 2 players, 2 states (L and H) and the possible actions 
of each player are qi ∈ [0, ∞), but firm 2 has two possible types. 
The payoff functions of the players, after quantity choices are made, 
are given by 

u1((q1, q2), t) = q1(P(q1 + q2) − C ) 

u2((q1, q2), t) = q2(P(q1 + q2) − Ct ), 

where t ∈ {L, H} is the type of player 2. 
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Networks: Lectures 20-22 Bayesian Games 

Example (continued) 

A strategy profile can be represented as (q1 
∗, qL 

∗, qH 
∗ ) [or equivalently 

as (q1 
∗, q2 

∗(�2))], where qL 
∗ and qH 

∗ denote the actions of player 2 as a 
function of its possible types. 

We now characterize the Bayesian Nash equilibria of this game by 
computing the best response functions (correspondences) and finding 
their intersection. 

There are now three best response functions and they are are given by 

B1(qL, qH ) = arg max 
q1≥0 

{�(P(q1 + qL) − C )q1 

+ (1 − �)(P(q1 + qH ) − C )q1}
BL(q1) = arg max 

qL≥0
{(P(q1 + qL) − CL)qL} 

BH (q1) = arg max 
qH ≥0

{(P(q1 + qH ) − CH )qH }. 
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Networks: Lectures 20-22 Bayesian Games 

Example (continued) 

The Bayesian Nash equilibria of this game are vectors (q1

∗, qL 

∗, qH 
∗ )
 

such that 

B1(qL
∗, qH 

∗ ) = q1 
∗, BL(q1 

∗) = qL
∗, BH (q1 

∗) = qH 
∗ . 

To simplify the algebra, let us assume that P(Q) = � − Q, Q ≤ �. 
Then we can compute: 

1
∗ 
1q
 = (� − 2C + �CL + (1 − �)CH )

3 
∗ 
Lq
 = 

1 1
 
(� − 2CL + C ) − (1 − �)(CH − CL)

3 6 
∗ 
Hq
 = 

1 1
 
(� − 2CH + C ) + �(CH − CL). 

3 6 
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Networks: Lectures 20-22 Bayesian Games 

Example (continued) 

Note that qL 
∗ > qH 

∗ . This reflects the fact that with lower marginal 
cost, the firm will produce more. 
However, incomplete information also affects firm 2’s output choice. 
Recall that, given this demand function, if both firms knew each 
other’s marginal cost, then the unique Nash equilibrium involves 
output of firm i given by 

1 
(� − 2Ci + Cj ). 

3 
With incomplete information, firm 2’s output is less if its cost is CH 

and more if its cost is CL. If firm 1 knew firm 2’s cost is high, then it 
would produce more. However, its lack of information about the cost 
of firm 2 leads firm 1 to produce a relatively moderate level of output, 
which then allows from 2 to be more “aggressive”. 
Hence, in this case, firm 2 benefits from the lack of information of 
firm 1 and it produces more than if 1 knew his actual cost. 
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Networks: Lectures 20-22 Auctions 

Auctions
 

A major application of Bayesian games is to auctions, which are 
historically and currently common method of allocating scarce goods 
across individuals with different valuations for these goods. 

This corresponds to a situation of incomplete information because the 
violations of different potential buyers are unknown. 

For example, if we were to announce a mechanism, which involves 
giving a particular good (for example a seat in a sports game) for free 
to the individual with the highest valuation, this would create an 
incentive for all individuals to overstate their valuations. 

In general, auctions are designed by profit-maximizing entities, which 
would like to sell the goods to raise the highest possible revenue. 
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Networks: Lectures 20-22 Auctions 

Auctions (continued) 

Different types of auctions and terminology: 

English auctions: ascending sequential bids. 
First price sealed bid auctions: similar to English auctions, but in the 
form of a strategic form game; all players make a single simultaneous 
bid and the highest one obtains the object and pays its bid. 
Second price sealed bid auctions: similar to first price auctions, except 
that the winner pays the second highest bid. 
Dutch auctions: descending sequential auctions; the auction stops when 
an individual announces that she wants to buy at that price. Otherwise 
the price is reduced sequentially until somebody stops the auction. 
Combinatorial auctions: when more than one item is auctioned, and 
agents value combinations of items. 
Private value auctions: valuation of each agent is independent of 
others’ valuations; 
Common value auctions: the object has a potentially common value, 
and each individual’s signal is imperfectly correlated with this common 
value. 
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Networks: Lectures 20-22 Auctions 

Modeling Auctions 

Model of auction: 

a valuation structure for the bidders (i.e., private values for the case of 
private-value auctions), 
a probability distribution over the valuations available to the bidders. 

Let us focus on first and second price sealed bid auctions, where bids 
are submitted simultaneously. 

Each of these two auction formats defines a static game of incomplete 
information (Bayesian game) among the bidders. 

We determine Bayesian Nash equilibria in these games and compare 
the equilibrium bidding behavior. 
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Networks: Lectures 20-22 Auctions 

Modeling Auctions (continued) 

More explicitly, suppose that there is a single object for sale and N 
potential buyers are bidding for the object. 
Bidder i assigns a value vi to the object, i.e., a utility 

vi − bi , 

when he pays bi for the object. He knows vi . This implies that we 
have a private value auction (vi is his “private information” and 
“private value”). 
Suppose also that each vi is independently and identically distributed 
on the interval [0, v̄ ] with cumulative distribution function F , with 
continuous density f and full support on [0, v̄ ]. 
Bidder i knows the realization of its value vi (or realization vi of the 
random variable Vi , though we will not use this latter notation) and 
that other bidders’ values are independently distributed according to 
F , i.e., all components of the model except the realized values are 
“common knowledge”. 
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Networks: Lectures 20-22 Auctions 

Modeling Auctions (continued) 

Bidders are risk neutral, i.e., they are interested in maximizing their 
expected profits. 

This model defines a Bayesian game of incomplete information, where 
the types of the players (bidders) are their valuations, and a pure 
strategy for a bidder is a map 

�i : [0, v̄ ] ℝ+.→ 

We will characterize the symmetric equilibrium strategies in the first 
and second price auctions. 

Once we characterize these equilibria, then we can also investigate 
which auction format yields a higher expected revenue to the seller at 
the symmetric equilibrium. 
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Networks: Lectures 20-22 Auctions 

Second Price Auctions 

Second price auctions will have the structure very similar to a 
complete information auction discussed earlier in the lectures. 
There we saw that each player had a weakly dominant strategy. This 
will be true in the incomplete information version of the game and 
will greatly simplify the analysis. 
In the auction, each bidder submits a sealed bid of bi , and given the 
vector of bids b = (bi , b−i ) and evaluation vi of player i , its payoff is { 

vi − maxj=i bj if bi > maxj=i bjUi ((bi , b−i ) , vi ) = 
0 

∕ 
if bi > maxj= 

∕ 
i bj .∕ 

Let us also assume that if there is a tie, i.e., bi = maxj=i bj , the ∕
object goes to each winning bidder with equal probability. 
With the reasoning similar to its counterpart with complete 
information, in a second-price auction, it is a weakly dominant 
strategy to bid truthfully, i.e., according to �II (v) = v . 
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Networks: Lectures 20-22 Auctions 

Second Price Auctions (continued) 

This can be established with the same graphical argument as the one 
we had for the complete information case. 

The first graph shows the payoff for bidding one’s valuation, the 
second graph the payoff from bidding a lower amount, and the third 
the payoff from bidding higher amount. 

In all cases B∗ denotes the highest bid excluding this player. 

B*v*

ui(bi)

bi = v*

B*v* B*
v*

bi < v* bi > v*

ui(bi) ui(bi)

bi bi
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Networks: Lectures 20-22 Auctions 

Second Price Auctions (continued) 

Moreover, now there are no other optimal strategies and thus the 
(Bayesian) equilibrium will be unique, since the valuation of other 
players are not known. 
Therefore, we have established: 

Proposition 

In the second price auction, there exists a unique Bayesian Nash 
equilibrium which involves 

�II (v) = v . 

It is straightforward to generalize the exact same result to the 
situation in which bidders’ values are not independently and 
identically distributed. As in the complete information case, bidding 
truthfully remains a weakly dominant strategy. 
The assumption of private values is important (i.e., the valuations are 
known at the time of the bidding). 
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Networks: Lectures 20-22 Auctions 

Second Price Auctions (continued) 

Let us next determine the expected payment by a bidder with value v , 
and for this, let us focus on the case in which valuations are 
independent and identically distributed 

Fix bidder 1 and define the random variable y1 as the highest value 
among the remaining N − 1 bidders, i.e., 

y1 = max{v2, . . . , vN }. 

Let G denote the cumulative distribution function of y1. 

Clearly,
 
G (y) = F (v)N−1 for any v ∈ [0, v̄ ]
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Networks: Lectures 20-22 Auctions 

Second Price Auctions (continued) 

In a second price auction, the expected payment by a bidder with 
value v is given by 

m II (v) = Pr(v wins) × �[second highest bid ∣ v is the highest bid] 

= Pr(y1 ≤ v) × �[y1 ∣ y1 ≤ v ] 

= G (v) × �[y1 ∣ y1 ≤ v ]. Payment II 

Note that here and in what follows, we can use strict or weak 
inequalities given that the relevant random variables have continuous 
distributions. In other words, we have 

Pr(y1 ≤ v) = Pr(y1 < v). 
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Networks: Lectures 20-22 Auctions 

Example: Uniform Distributions 

Suppose that there are two bidders with valuations, v1 and v2, 
distributed uniformly over [0, 1]. 
Then G (v1) = v1, and 

�[y1 ∣ y1 ≤ v1] = �[v2 ∣ v2 ≤ v1] = 
v 
2 
1 
. 

Thus 
2 

m II (v) = 
v 

. 
2 

If, instead, there are N bidders with valuations distributed over [0, 1], 

G (v1) = (v1)
N−1 

�[y1 ∣ y1 ≤ v1] = 
N

N 
− 1 

v1, 

and thus
 

m II (v) = 
N − 1 

v N .
 
N 
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Networks: Lectures 20-22 Auctions 

First Price Auctions
 

In a first price auction, each bidder submits a sealed bid of bi , and 
given these bids, the payoffs are given by 

vi − bi if bi > maxj=i bjUi ((bi , b−i ) , vi ) = 

{ 

0 if bi > maxj= 

∕ 
i bj .∕ 

Tie-breaking is similar to before. 

In a first price auction, the equilibrium behavior is more complicated 
than in a second-price auction. 

Clearly, bidding truthfully is not optimal (why not?). 

Trade-off between higher bids and lower bids. 

So we have to work out more complicated strategies. 
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Networks: Lectures 20-22 Auctions 

First Price Auctions (continued) 

Approach: look for a symmetric (continuous and differentiable) 
equilibrium. 

Suppose that bidders j = 1 follow the symmetric increasing and∕
differentiable equilibrium strategy �I = �, where 

�i : [0, v̄ ] ℝ+.→ 

We also assume, without loss of any generality, that � is increasing. 

We will then allow player 1 to use strategy �1 and then characterize � 
such that when all other players play �, � is a best response for player 
1. Since player 1 was arbitrary, this will complete the characterization 
of equilibrium. 

Suppose that bidder 1 value is v1 and he bids the amount b (i.e., 
� (v1) = b). 
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Networks: Lectures 20-22 Auctions 

First Price Auctions (continued) 

First, note that a bidder with value 0 would never submit a positive 
bid, so 

�(0) = 0. 

Next, note that bidder 1 wins the auction whenever maxi=1 �(vi ) < b.∕ 

Since �(⋅) is increasing, we have 

max �(vi ) = �(max vi ) = �(y1), 
i=1∕ i=1∕ 

where recall that
 
y1 = max{v2, . . . , vN }.
 

This implies that bidder 1 wins whenever y1 < �−1(b). 
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Networks: Lectures 20-22 Auctions 

First Price Auctions (continued) 

Consequently, we can find an optimal bid of bidder 1, with valuation 
v1 = v , as the solution to the maximization problem 

max G (�−1(b))(v − b). 
b≥0 

The first-order (necessary) conditions imply
 

g(�−1(b))
 ( )(v − b) − G (�−1(b)) = 0, 
�′ �−1(b)

(∗) 

where g = G ′ is the probability density function of the random 
variable y1. [Recall that the derivative of �−1(b) is 1/�′ (�−1(b)

)
]. 

This is a first-order differential equation, which we can in general 
solve. 
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Networks: Lectures 20-22 Auctions 

First Price Auctions (continued) 

More explicitly, a symmetric equilibrium, we have �(v) = b, and 
therefore (∗) yields 

G (v)�′(v) + g(v)�(v) = vg(v). 

Equivalently, the first-order differential equation is 

d ( )
G (v)�(v) = vg(v),

dv 
with boundary condition �(0) = 0. 
We can rewrite this as the following optimal bidding strategy∫ 

1 v 

�(v) = 
G (v) 0 

yg(y)dy = �[y1 ∣ y1 < v ]. 

Note, however, that we skipped one additional step in the argument:
 
the first-order conditions are only necessary, so one needs to show
 
sufficiency to complete the proof that the strategy
 
�(v) = �[y1 ∣ y1 < v ] is optimal.
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Networks: Lectures 20-22 Auctions 

First Price Auctions (continued) 

This detail notwithstanding, we have: 

Proposition 

In the first price auction, there exists a unique symmetric equilibrium given 
by 

�I (v) = �[y1 ∣ y1 < v ]. 
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Networks: Lectures 20-22 Auctions 

First Price Auctions: Payments and Revenues 

In general, expected payment of a bidder with value v in a first price 
auction is given by 

m I (v)	 = Pr(v wins) × � (v) 

= G (v) × �[y1 ∣ y1 < v ]. Payment I 

This can be directly compared to (Payment II), which was the 
payment in the second price auction 
(mII (v) = G (v) × �[y1 ∣ y1 ≤ v ]). 

This establishes the somewhat surprising results that mI (v) = mII (v), 
i.e., both auction formats yield the same expected revenue to the 
seller. 
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Networks: Lectures 20-22 Auctions 

First Price Auctions: Uniform Distribution
 

As an illustration, assume that values are uniformly distributed over 
[0, 1]. 

Then, we can verify that 

�I (v) = 
N − 1 

v . 
N 

Moreover, since G (v1) = (v1)
N−1, we again have
 

m I (v) = 
N − 1 

v N .
 
N 
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Networks: Lectures 20-22 Auctions 

Revenue Equivalence 

In fact, the previous result is a simple case of a more general theorem. 

Consider any standard auction, in which buyers submit bids and the 
object is given to the bidder with the highest bid. 

Suppose that values are independent and identically distributed and 
that all bidders are risk neutral. Then, we have the following theorem: 

Theorem 

Any symmetric and increasing equilibria of any standard auction (such 
that the expected payment of a bidder with value 0 is 0) yields the same 
expected revenue to the seller. 
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Networks: Lectures 20-22 Auctions 

Sketch Proof
 

Consider a standard auction A and a symmetric equilibrium � of A. 

Let mA(v) denote the equilibrium expected payment in auction A by 
a bidder with value v . 

Assume that � is such that �(0) = 0. 

Consider a particular bidder, say bidder 1, and suppose that other 
bidders are following the equilibrium strategy �. 

Consider the expected payoff of bidder 1 with value v when he bids 
b = �(z) instead of �(v), 

UA(z , v) = G (z)v − m A(z). 

Maximizing the preceding with respect to z yields 

∂ d 
UA(z , v) = g(z)v − m A(z) = 0. 

∂z dz 
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Sketch Proof (continued) 

An equilibrium will involve z = v (Why?) Hence, 

d 
m A(y) = g(y)y for all y ,

dy 

implying that ∫ v 

m A(v) = yg(y)dy = G (v) × �[y1 ∣ y1 < v ], (General Payment) 
0 

establishing that the expected revenue of the seller is the same 
independent of the particular auction format. 

(General Payment), not surprisingly, has the same form as (Payment 
I) and (Payment II). 
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Common Value Auctions
 

Common value auctions are more complicated, because each player 
has to infer the valuation of the other player (which is relevant for his 
own valuation) from the bid of the other player (or more generally 
from the fact that he has one). 

This generally leads to a phenomenon called winner’s 
curse—conditional on winning each individual has a lower valuation 
than unconditionally. 

The analysis of common value auctions is typically more complicated. 
So we will just communicate the main ideas using an example. 
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Common Value Auctions: The Difficulty 

To illustrate the difficulties with common value auctions, suppose a 
situation in which two bidders are competing for an object that has 
either high or low quality, or equivalently, value v ∈ {0, v̄} to both of 
them (for example, they will both sell the object to some third party). 
The two outcomes are equally likely. 
They both receive a signal si ∈ {l , h}. Conditional on a low signal 
(for either player), v = 0 with probability 1. Conditional on a high 
signal, v = v̄ with probability p > 1/2. [Why are we referring to this 
as a “signal”?] 
This game has no symmetric pure strategy equilibrium. 
Suppose that there was such an equilibrium, in which b (0) = bl and 
b (v̄) = bh ≥ bl . If player 1 has type v̄ and indeed bids bh, he will 
obtain the object with probability 1 when player 2 bids bl and with 
probability 1/2 when player 2 bids bh. 
Clearly we must have bl = 0 (Why?). 
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Common Value Auctions: The Difficulty 

In the first case, it means that the other player has received a low 
signal, but if so, v = 0. In this case, player 1 would not like to pay 
anything positive for the good—this is the winner’s curse. 

In the second case, it means that both players have received a high 
signal, so the object is high-quality with probability 1 − (1 − p)2 . So 
in this case, it would be better to bid � more and obtain the object 

with probability 1, unless bh = 1 − (1 − p)2 v̄ . But a bid of [ ]
[ ]

bh = 1 − (1 − p)2 v̄ will, on average, lose money, since it will also 

win the object when the other bidder has received the low signal. 
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Common Value Auctions: A Simple Example 

If, instead, we introduce some degree of private values, then common 
value auctions become more tractable. 

Consider the following example. There are two players, each receiving 
a signal si . The value of the good to both of them is 

vi = �si + �s−i , 

where � ≥ � ≥ 0. Private values are the special case where � = 1 
and � = 0. 

Suppose that both s1 and s2 are distributed uniformly over [0, 1]. 
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Second Price Auctions with Common Values 

Now consider a second price auction. 

Instead of truthful bidding, now the symmetric equilibrium is each 
player bidding
 

bi (si ) = (� + �) si .
 

Why? 

Given that the other player is using the same strategy, the probability 
that player i will win when he bids b is 

Pr (b−i < b) = Pr ((� + �) s−i < b) 
b 

= . 

The price he will pay is simply b−i = (� + �) s−i (since this is a 
second price auction). 
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Second Price Auctions with Common Values (continued)
 

Conditional on the fact that b−i ≤ b, s−i is still distributed uniformly 
(with the top truncated). In other words, it is distributed uniformly 
between 0 and b. Then the expected price is [ ]

b b
� (� + �) s−i ∣ s−i < = . 

� + � 2 

Next, let us compute the expected value of player −i ’s signal 
conditional on player i winning. With the same reasoning, this is [ ]

b b
� s−i ∣ s−i <

� + � 
= 

2 (� + �) 
. 
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Second Price Auctions with Common Values (continued) 

Therefore, the expected utility of bidding bi for player i with signal si 
is: ( )

bi
Ui (bi , si ) = Pr [bi wins] × �si + �� [s−i ∣ bi wins] − 

2 [ ]
bi � bi bi 

= �si + . 
� + � 2 � + � 

− 
2 

Maximizing this with respect to bi (for given si ) implies 

bi (si ) = (� + �) si , 

establishing that this is the unique symmetric Bayesian Nash 
equilibrium of this common values auction. 

50 



Networks: Lectures 20-22 Common Value Auctions 

First Price Auctions with Common Values 

We can also analyze the same game under an auction format 
corresponding to first price sealed bid auctions. 

In this case, with an analysis similar to that of the first price auctions 
with private values, we can establish that the unique symmetric 
Bayesian Nash equilibrium is for each player to bid 

bi
I (si ) = 

1 
= (� + �) si . 

2 

It can be verified that expected revenues are again the same. This 
illustrates the general result that revenue equivalence principle 
continues to hold for, value auctions. 
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Incomplete Information in Extensive Form Games 

Many situations of incomplete information cannot be represented as 
static or strategic form games. 

Instead, we need to consider extensive form games with an explicit 
order of moves—or dynamic games. 

In this case, as mentioned earlier in the lectures, we use information 
sets to represent what each player knows at each stage of the game. 

Since these are dynamic games, we will also need to strengthen our 
Bayesian Nash equilibria to include the notion of perfection—as in 
subgame perfection. 

The relevant notion of equilibrium will be Perfect Bayesian Equilibria, 
or Perfect Bayesian Nash Equilibria. 
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Example
 

Figure: Selten’s Horse 
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Dynamic Games of Incomplete Information 

Definition 

A dynamic game of incomplete information consists of 

A set of players ℐ; 
A sequence of histories Ht at the tth stage of the game, each history 
assigned to one of the players (or to Nature); 

An information partition, which determines which of the histories 
assigned to a player are in the same information set. 

A set of (pure) strategies for each player i , Si , which includes an 
action at each information set assigned to the player. 

A set of types for each player i : �i ∈ Θi ; 

A payoff function for each player i : ui (s1, . . . , sI , �1, . . . , �I ); 

A (joint) probability distribution p(�1, . . . , �I ) over types (or 
P(�1, . . . , �I ) when types are not finite). 
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Strategies, Beliefs and Bayes Rule 

The most economical way of approaching these games is to first 
define a belief system, which determines a posterior for each agent 
over to set of nodes in an information set. Beliefs systems are often 
denoted by �. 

In Selten’s horse player 3 needs to have beliefs about whether when 
his information set is reached, he is at the left or the right node. 

A strategy can then be expressed as a mapping that determines the 
actions of the player is a function of his or her beliefs at the relevant 
information set. 

We say that a strategy is sequentially rational if, given beliefs, no 
player can improve his or her payoffs at any stage of the game. 

We say that a belief system is consistent if it is derived from 
equilibrium strategies using Bayes rule. 
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Strategies, Beliefs and Bayes Rule (continued) 

In Selten’s horse, if the strategy of player 1 is D, then Bayes rule 
implies that �3 (left) = 1, since conditional on her information set 
being reached, player 3’s assessment must be that this was because 
player 1 played D. 

Similarly, if the strategy of player 1 is D with probability p and the 
strategy of player 2 is d with probability q, then Bayes rule implies 
that 

p
�3 (left) = . 

p + (1 − p) q 

What happens if p = q = 0? In this case, �3 (left) is given by 0/0, 
and is thus undefined. Under the consistency requirement here, it can 
take any value. This implies, in particular, that information sets that 
are not reached along the equilibrium path will have unrestricted 
beliefs. 
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Perfect Bayesian Equilibria 

Definition 

A Perfect Bayesian Equilibrium in a dynamic game of incomplete 
information is a strategy profile s and belief system � such that: 

The strategy profile s is sequentially rational given �. 

The belief system � is consistent given s. 

Perfect Bayesian Equilibrium is a relatively weak equilibrium concept 
for dynamic games of incomplete information. It is often strengthened 
by restricting beliefs information sets that are not reached along the 
equilibrium path. We will return to this issue below. 
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Existence of Perfect Bayesian Equilibria 

Theorem 

Consider a finite dynamic game of incomplete information. Then a 
(possibly mixed) Perfect Bayesian Equilibrium exists. 

Once again, the idea of the proof is the same as those we have seen 
before. 

Recall the general proof of existence for dynamic games of imperfect 
information. Backward induction starting from the information sets at 
the end ensures perfection, and one can construct a belief system 
supporting these strategies, so the result is a Perfect Bayesian 
Equilibrium. 
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Perfect Bayesian Equilibria in Selten’s Horse (continued) 

However, if we look at sequential rationality, the second of these 
equilibria will be ruled out. 

Suppose we have (D, c , L). 

The belief of player 3 will be �3 (left) = 1. 

Player 2, if he gets a chance to play, will then never play c , since d 
has a payoff of 4, while c would give him 1. If he were to play d , then 
player of 1 would prefer C , but (C , d , L) is not an equilibrium, 
because then we would have �3 (left) = 0 and player 3 would prefer R. 

Therefore, there is a unique pure strategy Perfect Bayesian 
Equilibrium outcome (C , c , R). The belief system that supports this 
could be any �3 (left) ∈ [0, 1/3]. 
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Job Market Signaling 

Consider the following simple model to illustrate the issues. 

There are two types of workers, high ability and low ability. 

The fraction of high ability workers in the population is �. 

Workers know their own ability, but employers do not observe this 
directly. 

High ability workers always produce yH , low ability workers produce 
yL. 
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Baseline Signaling Model (continued) 

Workers can invest in education, e ∈ {0, 1}.
 
The cost of obtaining education is cH for high ability workers and cL
 

for low ability workers.
 
Crucial assumption (“single crossing”)
 

cL > cH 

That is, education is more costly for low ability workers. This is often 
referred to as the “single-crossing” assumption, since it makes sure 
that in the space of education and wages, the indifference curves of 
high and low types intersect only once. For future reference, I denote 
the decision to obtain education by e = 1. 
To start with, suppose that education does not increase the 
productivity of either type of worker. 
Once workers obtain their education, there is competition among a 
large number of risk-neutral firms, so workers will be paid their 
expected productivity. 
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Baseline Signaling Model (continued) 

Two (extreme) types of equilibria in this game (or more generally in 
signaling games). 

Separating, where high and low ability workers choose different levels
 
of schooling.
 

Pooling, where high and low ability workers choose the same level of
 
education.
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Separating Equilibrium 

Suppose that we have 

yH − cH > yL > yH − cL. (∗∗) 

This is clearly possible since cH < cL. 

Then the following is an equilibrium: all high ability workers obtain 
education, and all low ability workers choose no education. 

Wages (conditional on education) are: 

w (e = 1) = yH and w (e = 0) = yL 

Notice that these wages are conditioned on education, and not 
directly on ability, since ability is not observed by employers. 
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Separating Equilibrium (continued) 

Let us now check that all parties are playing best responses. 

Given the strategies of workers, a worker with education has 
productivity yH while a worker with no education has productivity yL. 
So no firm can change its behavior and increase its profits. 

What about workers? 

If a high ability worker deviates to no education, he will obtain 
w (e = 0) = yL, but 

w (e = 1) − cH = yH − cH > yL. 
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Separating Equilibrium (continued) 

If a low ability worker deviates to obtaining education, the market will 
perceive him as a high ability worker, and pay him the higher wage 
w (e = 1) = yH . But from (∗∗), we have that 

yH − cL < yL. 

Therefore, we have indeed an equilibrium. 

In this equilibrium, education is valued simply because it is a signal 
about ability. 

Is “single crossing important”? 
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Pooling Equilibrium 

The separating equilibrium is not the only one. 

Consider the following allocation: both low and high ability workers 
do not obtain education, and the wage structure is 

w (e = 1) = (1 − �) yL + �yH and w (e = 0) = (1 − �) yL + �yH 

Again no incentive to deviate by either workers or firms. 

Is this Perfect Bayesian Equilibrium reasonable? 
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Pooling Equilibrium (continued) 

The answer is no. 

This equilibrium is being supported by the belief that the worker who 
gets education is no better than a worker who does not. 

But education is more costly for low ability workers, so they should be 
less likely to deviate to obtaining education. 

This can be ruled out by various different refinements of equilibria. 
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Pooling Equilibrium (continued) 

Simplest refinement: The Intuitive Criterion by Cho and Kreps. 

The underlying idea: if there exists a type who will never benefit from 
taking a particular deviation, then the uninformed parties (here the 
firms) should deduce that this deviation is very unlikely to come from 
this type. 

This falls within the category of “forward induction” where rather 
than solving the game simply backwards, we think about what type of 
inferences will others derive from a deviation. 
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Pooling Equilibrium (continued) 

Take the pooling equilibrium above. 
Let us also strengthen the condition (∗∗) to 

yH − cH > (1 − �) yL + �yH and yL > yH − cL 

Consider a deviation to e = 1. 
There is no circumstance under which the low type would benefit 
from this deviation, since 

yL > yH − cL, 

and the low ability worker is now getting 

(1 − �) yL + �yH . 

Therefore, firms can deduce that the deviation to e = 1 must be 
coming from the high type, and offer him a wage of yH . 
Then (∗∗) ensures that this deviation is profitable for the high types, 
breaking the pooling equilibrium. 
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Pooling Equilibrium (continued) 

The reason why this refinement is called The Intuitive Criterion is 
that it can be supported by a relatively intuitive “speech” by the 
deviator along the following lines: 

“you have to deduce that I must be the high type deviating 
to e = 1, since low types would never ever consider such a 
deviation, whereas I would find it profitable if I could convince 
you that I am indeed the high type).” 

Of course, this is only very loose, since such speeches are not part of 
the game, but it gives the basic idea. 
Overall conclusion: separating equilibria, where education is a 
valuable signal, may be more likely than pooling equilibria. 
We can formalize this notion and apply it as a refinement of Perfect 
Bayesian Equilibria. It turns out to be a particularly simple and useful 
notion for signaling-type games. 
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Social Learning 

An important application of dynamic games of incomplete
 
information as to situations of social learning.
 
A group (network) of agents learning about an underlying state 
(product quality, competence or intentions of the politician, usefulness 
of the new technology, etc.) can be modeled as a dynamic game of 
incomplete information. 
The simplest setting would involve observational learning, i.e., 
agents learning from the observations of others in the past. 

Here a Bayesian approach; we will discuss non-Bayesian approaches in 
the coming lectures. 

In observational learning, one observes past actions and updates his or 
her beliefs. 
This might be a good way of aggregating dispersed information in a 
large social group. 
We will see when this might be so and when such aggregation may 
fail. 
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The Promise of Information Aggregation: The Condorcet 
Jury Theorem 

An idea going back to Marquis de Condorcet and Francis Galton is
 
that large groups can aggregate dispersed information.
 

Suppose, for example, that there is an underlying state � ∈ {0, 1},
 
with both values ex ante equally likely.
 

Individuals have common values, and would like to make a decision
 
x = �.
 

But nobody knows the underlying state.
 

Instead, each individual receives a signal s ∈ {0, 1}, such that s = 1
 
has conditional probability p > 1/2 when � = 1, and s = 0 has
 
conditional probability p > 1/2 when � = 0.
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The Condorcet Jury Theorem (continued) 

Suppose now that a large number, N, of individuals obtain
 
independent signals.
 

If they communicate their signals, or if each takes a preliminary action 
following his or her signal, and N is large, from the (strong) Law of 
Large Numbers, they will identify the underlying state with 
probability 1. 
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Game Theoretic Complications 

However, the selfish behavior of individuals in game theoretic 
situations may prevent this type of efficient aggregation of dispersed 
information. 

The basic idea is that individuals will do whatever is best for them 
(given their beliefs) and this might prevent information aggregation 
because they may not use (and they may not reveal) their signal. 

Specific problem: herd behavior, where all individuals follow a pattern 
of behavior regardless of their signal (“bottling up” their signal). 

This is particularly the case with observational learning and may 
prevent the optimistic conclusion of the Condorcet Jury Theorem. 

To illustrate this, let us use a model origin only proposed by 
Bikchandani, Hirshleifer and Welch (1992) “A Theory of Fads, 
Fashion, Custom and Cultural Change As Informational Cascades,” 
and Banerjee (1992) “A Simple Model of Herd Behavior.” 
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Observational Social Learning 

Consider the same setup as above, with two states � ∈ {0, 1}, with
 
both values ex ante equally likely.
 

Once again we assume common values, so each agent would like to
 
take a decision x = �. But now decisions are taken individually.
 

Each individual receives a signal s ∈ {0, 1}, such that s = 1 has
 
conditional probability p > 1/2 when � = 1, and s = 0 has
 
conditional probability p > 1/2 when � = 0.
 

Main difference: individuals make decisions sequentially.
 

More formally, each agent is indexed by n ∈ ℕ, and acts at time t = n, 
and observes the actions of all those were the fact that before t, i.e., 
agent n ′ acting at time t ′ observes the sequence {xn} t

′ −1 
n=1 . 

We will look for a Perfect Bayesian Equilibrium of this game. 
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The “Story” 

Agents arrive in a town sequentially and choose to dine in an Indian 
or in a Chinese restaurant. 

One restaurant is strictly better, underlying state 
� ∈ {Chinese, Indian}. All agents would like to dine at the better 
restaurant. 

Agents have independent binary private signals s indicating which risk 
I might be better (correct with probability p > 1/2). 

Agents observe prior decisions (who went to which restaurant), but 
not the signals of others. 
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Perfect Bayesian Equilibrium with Herding 

Let xn be the history of actions up to and including agent n, and #xn 

denote the number of times xn′ = 1 in xn (for n ′ ≤ n). 

Proposition 

There exists a pure strategy Perfect Bayesian Equilibrium such that 
x1 (s1) = s1, x2 (s2, x1) = s2, and for n ≥ 3, ⎧ ⎨ 1 if #xn−1 > n−1 + 1 ( ) 2
 

xn sn, x n−1 = ⎩ 
0 if #xn−1 < n−2

1
 

sn otherwise. 

We refer to this phenomenon as herding, since agents after a certain 
number “herd” on the behavior of the earlier agents. 

Bikchandani, Hirshleifer and Welch refer to this phenomenon as
 
informational cascade.
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Proof Idea 

If the first two agents choose 1 (given the strategies in the 
proposition), then agent 3 is better off choosing 1 even if her signal 
indicates 0 (since two signals are stronger than one, and the behavior 
of the first two agents indicates that their signals were pointing to 1). 

This is because 

1 
Pr [� = 1 ∣ s1 = s2 = 1 and s3 = 0] > 

2 
. 

Agent 3 does not observe s1 and s2, but according to the strategy 
profile in the proposition, x1 (s1) = s1 and x2 (s2, x1) = s2. This 
implies that observing x1 and x2 is equivalent to observing s1 and s2. 

This reasoning applies later in the sequence (though agents rationally 
understand that those herding the not revealing information). 
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Illustration 

Thinking of the sequential choice between Chinese and Indian 
restaurants: 
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Herding 

This type of behavior occurs often when early success of a product 
acts as a tipping point and induces others to follow it. 

It gives new insight on “diffusion of innovation, ideas and behaviors”. 

It also sharply contrasts with the efficient aggregation of information 
implied by the Condorcet Jury Theorem. 

For example, the probability that the first two agents will choose 1 
2even when � = 0 is (1 − p) which can be close to 1/2. 

Moreover, a herd can occur not only following the first two agents, but 
later on as indicated by the proposition. 

This type of behavior is also inefficient because of an informational 
externality: agents do not take into account the information that they 
reveal to others by their actions. A social planner would prefer 
“greater experimentation” earlier on in order to reveal the true state. 
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Other Perfect Bayesian Equilibria 

There are other, mixed strategy Perfect Bayesian Equilibria. But 
these also exhibit herding. 

For example, the following is a best response for player 2: { 
x1 with probability q2 x2 (s2, x1) = 
s2 with probability 1 − q2. ( )

However, for any q2 < 1, if x1 = x2 = x , then x3 s3, x2 must be 
equal to x . Therefore, herding is more likely. 

In the next lecture, we will look at more general models of social 
learning in richer group and network structures. 
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