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Networks: Lectures 22-23 Introduction 

Outline


Recap on Bayesian social learning 

Non-Bayesian (myopic) social learning in networks 

Bayesian observational social learning in networks 

Bayesian communication social learning in networks 

Reading: 

Jackson, Chapter 8. 

EK, Chapter 16. 
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Networks: Lectures 22-23 Introduction 

Introduction


How does network structure and “influence” of specific individuals 
affect opinion formation and learning? 

To answer this question, we need to extend the simple example of 
herding from the previous literature to a network setting. 

Question: is Bayesian social learning the right benchmark? 

Pro: Natural benchmark and often simple heuristics can replicate it 
Con: Often complex 

Non-Bayesian myopic learning: (rule-of-thumb) 
Pro: Simple and often realistic 
Con: Arbitrary rules-of-thumb, different performances from different 
rules, how to choose the right one? 
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Networks: Lectures 22-23 Introduction 

What Kind of Learning? 

What do agents observe? 
Observational learning: observe past actions (as in the example) 

Most relevant for markets 

Communication learning: communication of beliefs or estimates 
Most relevant for friendship networks (such as Facebook) 

The model of social learning in the previous lecture was a model of 
Bayesian observational learning. 
It illustrated the possibility of herding, where everybody copies previous 
choices, and thus the possibility that dispersely held information may 
fail to aggregate. 
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Networks: Lectures 22-23 Recap of Herding 

Recap of Herding 

Agents arrive in town sequentially and choose to dine in an Indian or

in a Chinese restaurant.

A restaurant is strictly better, underlying state θ ∈ {Chinese, Indian}.

Agents have independent binary private signals.

Signals indicate the better option with probability p > 1/2.

Agents observe prior decisions, but not the signals of others.

Realization: Assume θ = Indian


Agent 1 arrives. Her signal indicates ‘Chinese’. She chooses Chinese. 
Agent 2 arrives. His signal indicates ‘Chinese’. He chooses Chinese. 
Agent 3 arrives. Her signal indicates ‘Indian’. She disregards her signal 
and copies the decisions of agents 1 and 2, and so on. 

1

Decision = ‘Chinese’

2

Decision = ‘Chinese’

3

Decision = ‘Chinese’
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Networks: Lectures 22-23 Recap of Herding 

Potential Challenges 

Perhaps this is too “sophisticated”. 

What about communication? Most agents not only learn from 
observations, but also by communicating with friends and coworkers. 

Let us turn to a simple model of myopic (rule-of-thumb) learning and 
also incorporate network structure. 
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Networks: Lectures 22-23 Myopic Learning 

Myopic Learning 

First introduced by DeGroot (1974) and more recently analyzed by 
Golub and Jackson (2007). 

Beliefs updated by taking weighted averages of neighbors’ beliefs 

A finite set {1, . . . , n} of agents 
Interactions captured by an n × n nonnegative interaction matrix T 

Tij > 0 indicates the trust or weight that i puts on j 
T is a stochastic matrix (row sum=1; see below) 

There is an underlying state of the world θ ∈ R 

Each agent has initial belief xi (0); we assume θ = 1/n i
n 
=1 xi (0) 

Each agent at time k updates his belief xi (k) according to 

n

xi (k + 1) = Tij xj (k) 
j=1 
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Networks: Lectures 22-23 Myopic Learning 

What Does This Mean?


Each agent is updating his or her beliefs as an average of the 
neighbors’ beliefs. 

Reasonable in the context of one shot interaction. 

Is it reasonable when agents do this repeatedly? 
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Networks: Lectures 22-23 Myopic Learning 

Stochastic Matrices


Definition 

T is a stochastic matrix, if the sum of the elements in each row is equal to 
1, i.e., � 

Tij = 1 for all i . 
j 

Definition 

T is a doubly stochastic matrix, if the sum of the elements in each row 
and each column is equal to 1, i.e., 

Tij = 1 for all i and Tij = 1 for all j . 
j i 

Throughout, assume that T is a stochastic matrix. Why is this 
reasonable? 
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Networks: Lectures 22-23 Myopic Learning 

Example 

Consider the following example ⎛ ⎞ 
1/3 1/3 1/3 

T = ⎝ 1/2 1/2 0 ⎠ 

0 1/4 3/4 

Updating as shown
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Example (continued) 

Suppose that initial vector of beliefs is ⎛ ⎞ 
1 

x (0) = ⎝	 0 ⎠ 

0 

Then updating gives ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
1/3 1/3 1/3 1 1/3 

x (1) = Tx (0) = ⎝ 1/2 1/2 0 ⎠ ⎝ 0 ⎠ = ⎝ 1/2 ⎠ 

0 1/4 3/4 0 0 
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Example (continued) 

In the next round, we have ⎛ ⎞⎛ ⎞ 
1/3 1/3 1/3 1/3 

x (2) = Tx (1) = T 2 x (0) = ⎝ 1/2 1/2 0 ⎠⎝ 1/2 ⎠ 

0 1/4 3/4 0 ⎛ ⎞ 
5/18 

= ⎝ 5/12 ⎠ 

1/8 

In the limit, we have ⎛ ⎞ ⎛ ⎞ 
3/11 3/11 5/11 3/11 

x (n) = T n x (0) ⎝ 3/11 3/11 5/11 ⎠ x (0) = ⎝ 3/11 ⎠ .→ 
3/11 3/11 5/11 3/11 

Note that the limit matrix, T ∗ = limn→∞ T n has identical rows. 
Is this kind of convergence general? Yes, but with some caveats. 
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Example of Non-convergence 

Consider instead ⎛ ⎞ 
0 1/2 1/2 

T = ⎝ 1 0 0 ⎠ 

1 0 0 

Pictorially 
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Example of Non-convergence (continued) 

In this case, we have 
For n even: ⎛ ⎞ 

1 0 0 
T n = ⎝	 0 1/2 1/2 ⎠ . 

0 1/2 1/2 

For n odd: ⎛ ⎞ 
1/2 1/2 0 

T n = ⎝ 1 0 0 ⎠ . 
1 0 0 

Thus, non-convergence. 
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Convergence 

Problem in the above example is periodic behavior. 
It is sufficient to assume that Tii > 0 for all i to ensure aperiodicity. 
Then we have: 

Theorem 

Suppose that T defines a strongly connected network and Tii > 0 for each 
i , then limn T n = T ∗ exists and is unique. Moreover, T ∗ = eπ�, where e is 
the unit vector and π is an arbitrary row vector. 

In other words, T ∗ will have identical rows. 
An immediate corollary of this is: 

Proposition 

In the myopic learning model above, if the interaction matrix T defines a 
strongly connected network and Tii > 0 for each i , then there will be 
consensus among the agents, i.e., limn→∞ xi (n) = x∗ for all i . 
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Networks: Lectures 22-23 Myopic Learning 

Learning 

But consensus is not necessarily a good thing. 

In the herding example, there is consensus (of sorts), but this could 
lead to the wrong outcome. 

We would like consensus to be at 

n
1 � 

x∗ = xi (0) = θ, 
n 

i=1 

so that individuals learn the underlying state. If this happens, we say 
that the society is wise. 
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When Will There Be Learning? 

Somewhat distressing result: 

Proposition 

In the myopic learning model, the society is wise if and only if T is doubly 
stochastic. 

Intuition: otherwise, there is no balance in the network, so some 
agents are influential; their opinion is listened to more than they listen 
to other people’s opinion. 

Is this a reasonable model for understanding the implications of

influence?
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Influential Agents and Learning 

A set of agents B is called

an influential family if the

beliefs of all agents outside

B is affected by beliefs of B

(in finitely many steps)


B

The previous proposition shows that the presence of influential agents 
implies no asymptotic learning 

The presence of influential agents is the same thing as lack of doubly 
stochasticity of T 
Interpretation: Information of influential agents overrepresented 

Distressing result since influential families (e.g., media, local leaders) 
common in practice 
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Towards a Richer Model


Too myopic and mechanical: If communicating with same people over 
and over again (deterministically), some recognition that this 
information has already been incorporated. 

No notion of misinformation or extreme views that can spread in the 
network. 

No analysis of what happens in terms of quantification of learning 
without doubly stochasticity 
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A Model of Misinformation


Misinformation over networks from Acemoglu, Ozdaglar, ParandehGheibi 
(2009) 

Finite set N = {1, . . . , n} of agents, each with initial belief xi (0). 

Time continuous: each agent recognized according to iid Poisson processes. 

xi (k): belief of agent i after k th communication. 

Conditional on being recognized, agent i meets agent j with probability pij : 

With probability β ij , the two agents agree and exchange information 

xi (k + 1) = xj (k + 1) = (xi (k) + xj (k))/2. 

With probability γ ij , disagreement and no exchange of information. 
With probability αij , i is influenced by j 

xi (k + 1) = �xi (k) + (1 − �)xj (k) 

for some � > 0 small. Agent j ’s belief remains unchanged. 

We say that j is a forceful agent if αij > 0 for some i . 

20 



Networks: Lectures 22-23 A Richer Model of Non-Bayesian Learning 

Evolution of Beliefs 

Letting x(k) = [x1(k), . . . , xn(k)], evolution of beliefs written as 

x(k + 1) = W (k)x(k),


where W (k) is a random matrix given by
⎧ ⎨ Aij ≡ I − (ei −ej )(ei −ej )
� 

with probability pij βij /n,2 
W (k) = ⎩ Jij ≡ I − (1 − �) ei (ei − ej )

� with probability pij αij /n, 
I with probability pij γ ij /n, 

where ei is the ith unit vector (1 in the ith position and 0s everywhere else). 

The matrix W (k) is a (row) stochastic matrix for all k, and is iid over all k, 
hence


E [W (k)] = W̃ for all k ≥ 0.


We refer to the matrix W̃ as the mean interaction matrix. 
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Social Network and Influence Matrices 

Using the belief update model, we can decompose W̃ as: 

1 
W̃ = pij βij Aij + αij Jij + γ ij I n 

i,j 

1 � � � 1 � � � 
= pij (1 − γ ij )Aij + γ ij I + pij αij Jij − Aij

n n 
i,j i,j 

= T + D. 

Matrix T represents the underlying social interactions: social network matrix 

Matrix D represents the influence structure in the society: influence matrix 

Decomposition of W̃ into a doubly stochastic and a remainder component 

Social network graph: the undirected (and weighted) graph (N , A), where 
A = {{i , j} | Tij > 0}, and the edge {i , j} weight given by Tij = Tji 
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Assumptions 

Suppose, in addition, that the graph (N , E), where 
E = {(i , j) | pij > 0}, is strongly connected; otherwise, no consensus 
is automatic. 

Moreover, suppose that 

βij + αij > 0 for all (i , j) ∈ E . 

Positive probability that even forceful agents obtain information from

the other agents in the society.

Captures the idea that “no man is an island”
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Convergence to Consensus 

Theorem 

The beliefs {xi (k)}, i ∈ N converge to a consensus belief, i.e., there exists a 
random variable x̄ such that 

lim xi (k) = x̄ for all i with probability one. 
k→∞ 

Moreover, there exists a probability vector π̄ with limk→∞ W̃
k = eπ̄�, such that 

n

E [x̄ ] = π̄i xi (0) = π̄�x(0). 
i=1 

Convergence to consensus guaranteed; consensus belief is a random variable. 

We are interested in providing an upper bound on � � � �� �1 1 
E x̄ − 

n 
xi (0) = π̄i − 

n 
xi (0). 

i∈N i∈N 

π̄ : consensus distribution, and π̄i − 1 : excess influence of agent i n 
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Global Bounds on Consensus Distribution 

Theorem 

Let π denote the consensus distribution. Then, 

e i,j pij αij1 1 
π − 

2 
≤ ,

1 − λ2n n 

where λ2 is the second largest eigenvalue of the social network matrix T . 

Proof using perturbation theory of Markov Chains 

View W̃ as a perturbation of matrix T by the influence matrix D 

λ2 related to mixing time of a Markov Chain 

When the spectral gap (1 − λ2) is large, we say that the Markov Chain 
induced by T is fast-mixing 

In fast-mixing graphs, forceful agents will themselves be influenced by others 
(since βij + αij > 0 for all i , j) 

Beliefs of forceful agents moderated by the society before they spread 
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Bayesian Social Learning 

Learning over general networks; Acemoglu, Dahleh, Lobel, Ozdaglar (2008).


Two possible states of the world θ ∈ {0, 1}, both equally likely


A sequence of agents (n = 1, 2, ...) making decisions xn ∈ {0, 1}.


Agent n obtains utility 1 if xn = θ, and utility 0 otherwise.


Each agent has an iid private signal sn in S . The signal is generated

according to distribution Fθ (signal structure)


Agent n has a neighborhood B(n) ⊆ {1, 2, ..., n − 1} and observes the

decisions xk for all k ∈ B(n).


The set B(n) is private information. 

The neighborhood B(n) is generated according to an arbitrary distribution 
Qn (independently for all n) (network topology) 

The sequence {Qn}n∈N is common knowledge. 

Asymptotic Learning: Under what conditions does limn→∞ P(xn = θ) = 1? 
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An Example of a Social Network 

7

4

1
3

5

6

2

STATE 
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Perfect Bayesian Equilibria 

Agent n’s information set is In = {sn, B(n), xk for all k ∈ B(n)}


A strategy for individual n is σn : In → {0, 1}


A strategy profile is a sequence of strategies σ = {σn}n∈N.


A strategy profile σ induces a probability measure Pσ over {xn}n∈N. 
Definition 

A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium if for all n 

σ∗ 
n(In) ∈ arg max P(y ,σ∗−n )

(y = θ | In) 
y∈{0,1} 

A pure strategy PBE exists. Denote the set of PBEs by Σ∗. 

Definition 

We say that asymptotic learning occurs in equilibrium σ if xn converges to θ in 
probability, 

lim Pσ(xn = θ) = 1 
n→∞ 
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Some Difficulties of Bayesian Learning


No following the crowds
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Some Difficulties of Bayesian Learning 

No following the crowds 

1

X1 = 0

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 1
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Some Difficulties of Bayesian Learning 

No following the crowds 

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1
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Some Difficulties of Bayesian Learning 

No following the crowds 

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1

Less can be more 
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Some Difficulties of Bayesian Learning 

No following the crowds 

1

X1 = 1

2

X1 = 1

3

X1 = 1

4

X1 = 1

5

X1 = 0

X1 = 0 X1 = 1

Less can be more. 
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Equilibrium Decision Rule 

Lemma 

The decision of agent n, xn = σ(In), satisfies 

1, if Pσ(θ = 1 ) + Pσ θ = 1 B(n), xk for all k ∈ B(n) > 1, 
xn = 0, if Pσ(θ = 1 

|
| 
s
s
n

n) + Pσ 
� 
θ = 1 

|
| B(n), xk for all k ∈ B(n) 

� 
< 1, 

and xn ∈ {0, 1} otherwise. 

Implication: The belief about the state decomposes into two parts: 

the Private Belief: Pσ (θ = 1 | sn); 
the Social Belief: Pσ (θ = 1 | B(n), xk for all k ∈ B(n)). 
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Private Beliefs 

Assume F0 and F1 are mutually absolutely continuous. 
The private belief of agent n is then 

dF0(sn) 
−1 

pn(sn) = Pσ(θ = 1|sn) = 1 + 
dF1(sn) 

. 

Definition 

The signal structure has unbounded private beliefs if 

dF0 dF0
inf (s) = 0 and sup (s) = ∞. 
s∈S dF1 s∈S dF1 

If the private beliefs are unbounded, then there exist agents with

beliefs arbitrarily strong in both directions.


Gaussian signals yield unbounded beliefs; discrete signals yield bounded 
beliefs. 
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Properties of Network Topology 

Definition 

A network topology {Qn}n∈N has expanding observations if for all K, 

lim Qn max b < K = 0. 
n→∞ b∈B(n) 

Nonexpanding observations equivalent to a group of agents that is 
excessively influential. This is stronger than being influential. 
More concretely, the first K agents are excessively influential if there 
exists � > 0 and an infinite subset N ∈ N such that 

Qn max b < K ≥ � for all 
b∈B(n) 

n ∈ N . 

For example, a group is excessively influential if it is the source of all 
information for an infinitely large component of the network. 

Expanding observations no excessively influential agents. ⇔ 
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Learning Theorem – with Unbounded Beliefs 

Theorem 

Assume that the network topology {Qn}n∈N has nonexpanding 
observations. Then, there exists no equilibrium σ ∈ Σ∗ with asymptotic 
learning. 

Theorem 

Assume unbounded private beliefs and expanding observations. Then, 
asymptotic learning occurs in every equilibrium σ ∈ Σ∗. 

Implication: Influential, but not excessively influential, individuals do 
not prevent learning. 

This contrasts with results in models of myopic learning. 
Intuition: The weight given to the information of influential individuals 
is adjusted in Bayesian updating. 
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Proof of Theorem – A Roadmap 

Characterization of equilibrium strategies when observing a single 
agent. 

Strong improvement principle when observing one agent. 

Generalized strong improvement principle. 

Asymptotic learning with unbounded private beliefs and expanding 
observations. 
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Observing a Single Decision 

Let B(n) = {b} for some agent n. There exists L
decision xn in σ ∈ Σ∗ satisfies 

xn = 

⎧ ⎨ ⎩ 

0, if pn < L
xb, if pn ∈ (Lσ 

b , U
1, if pn > Uσ 

Let Gj (r) = P(p ≤ r | θ = j) be the conditional distribution of the private 
belief with β and β denoting the lower and upper support 

35 
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Strong Improvement Principle 

Agent n has the option of copying the action of his neighbor b: 

Pσ(xn = θ | B(n) = {b}) ≥ Pσ(xb = θ). 

Using the equilibrium decision rule and the properties of private beliefs, we 
establish a strict gain of agent n over agent b. 

Proposition (Strong Improvement Principle) 

Let B(n) = {b} for some n and σ ∈ Σ∗ be an equilibrium. There exists a 
continuous, increasing function Z : [1/2, 1] [1/2, 1] with Z(α) ≥ α such that → 

Pσ(xn = θ | B(n) = {b}) ≥ Z (Pσ(xb = θ)) . 

Moreover, if the private beliefs are unbounded, then: 

Z(α) > α for all α < 1. 

Thus α = 1 is the unique fixed point of Z(α). 
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Generalized Strong Improvement Principle 

With multiple agents, learning no worse than observing just one of them. 

Equilibrium strategy is better than the following heuristic: 

Discard all decisions except the one from the most informed neighbor. 
Use equilibrium decision rule for this new information set. 

Proposition (Generalized Strong Improvement Principle) 

For any n ∈ N, any set B ⊆ {1, ..., n − 1} and any σ ∈ Σ∗, 

Pσ (xn = θ B(n) = B) ≥ Z max Pσ(xb = θ) .| 
b∈B 

Moreover, if the private beliefs are unbounded, then: 

Z(α) > α for all α < 1. 

Thus α = 1 is the unique fixed point of Z(α). 
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Proof of Theorem


Under expanding observations, one can construct a sequence of agents 
along which the generalized strong improvement principle applies 

Unbounded private beliefs imply that along this sequence Z(α)

strictly increases


Until unique fixed point α = 1, corresponding to asymptotic learning 
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No Learning with Bounded Beliefs 

Theorem 

Assume that the signal structure has bounded private beliefs. Assume that the 
network topology satisfies one of the following conditions: 

(a) B(n) = {1, ..., n − 1} for all n, 

(b) |B(n)| ≤ 1 for all n, 

(c)	 there exists some constant M such that |B(n)| ≤ M for all n and


lim max b = ∞ with probability 1,

n→∞ b∈B(n) 

then asymptotic learning does not occur. 

Implication: No learning from observing neighbors or sampling the past. 

Proof Idea -Part (c): Learning implies social beliefs converge to 0 or 1 a.s. 

With bounded beliefs, agents decide on the basis of social belief alone. 
Then, positive probability of mistake–contradiction 
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Learning with Bounded Beliefs 

Theorem 

(a)	 There exist random network topologies for which learning occurs in all 
equilibria for any signal structure (bounded or unbounded). 

(b)	 There exist signal structures for which learning occurs for a collection 
of network topologies. 

Important since it shows the role of stochastic network topologies and 
also the possibility of many pieces of very limited information to be 
aggregated. 
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Learning with Bounded Beliefs (Continued) 

Example 

Let the network topology be 

{1, ..., n − 1}, with probability 1 − 1 ,
B(n) = n 

∅, with probability n 
1 . 

Asymptotic learning occurs in all equilibria σ ∈ Σ∗ for any signal structure 
(F0, F1). 

Proof Idea: 
The rate of contrary actions in the long run gives away the state. 
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Heterogeneity and Learning 

So far, all agents have the same preferences. 

They all prefer to take action = θ, and with the same intensity. 

In realistic situations, not only diversity of opinions, but also diversity 
of preferences. 

How does diversity of preferences/priors affect social learning? 

Naive conjecture: diversity will introduce additional noise and make 
learning harder or impossible. 

Our Result: in the line topology, diversity always facilitates learning. 
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Model with Heterogeneous Preferences 

Assume B(n) = {1, ..., n − 1}.


Let agent n have private preference tn independently drawn from some H.


The payoff of agent n given by:


un (xn, tn, θ) = 
I (θ = 1) + 1 − tn if xn = 1 

I (θ = 0) + tn if xn = 0 

Assumption: H has full support on (γ, γ), G1, G0 have full support in (β, β). 

As before, private beliefs are unbounded if β = 0 and β = 1 and bounded if

β > 0 and β < 1.


Heterogeneity is unbounded if γ = 0 and γ = 1 and bounded if γ > 0 and

γ < 1.
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Main Results


Theorem 

With unbounded heterogeneity, i.e., [0, 1] ⊆ supp(H), asymptotic learning occurs 
in all equilibria σ ∈ Σ∗ for any signal structure (F0, F1). 

Greater heterogeneity under H1 than under H2 if γ < γ and γ1 > γ21 2 

Theorem 

With bounded heterogeneity (i.e., [0, 1] � supp(H)) and bounded private beliefs, 
there is no learning, but greater heterogeneity leads to “greater social learning”. 

Heterogeneity pulls learning in opposite directions: 

Actions of others are less informative (direct effect) 
Each agent uses more of his own signal in making decisions and, 
therefore, there is more information in the history of past actions 
(indirect effect). 

Indirect effect dominates the direct effect! 
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Some Observations


Preferences immediately imply that each agent will use a threshold 
rule as a function of this type tn. 

xn =
1, if Pσ(θ = 1|In) > tn; 
0, if Pσ(θ = 1|In) < tn. 

Similar arguments lead to a characterization in terms of private and 
social beliefs. 

Private belief: pn = P(θ = 1|sn) 
Social belief: qn = P(θ = 1|x1, ..., xn−1). 

45 



Networks: Lectures 22-23 Bayesian Learning What Heterogeneous Preferences 

Preliminary Lemmas 

Lemma 

In equilibrium, agent n chooses action xn = 0 if and and if 

tn(1 − qn) 
.pn ≤ 

tn(1 − 2qn) + qn 

This follows by manipulating the threshold decision rule.


Lemma 

The social belief qn converges with probability 1. 

This follows from a famous result in stochastic processes, Martingale 
Convergence Theorem (together with the observation that qn is a 
martingale). 

Let the limiting belief (random variable) be q̂. 
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Key Lemmas 

Lemma 

The limiting social belief q̂ satisfies 

q̂ ∈/

�� 

1 + 

� 

1 − 

β

β 

�� 
1 − 

γ

γ 
��−1 

, 

� 

1 + 

� 

1 − 

β

β 

�� 
1 − 

γ

γ 
��−1 

� 

with probability 1. 

Lemma 

The limiting social belief q̂ satisfies 

q̂ ∈/

� 

0, 

� 

1 + 
1 − 

β

β 

1 − 

β

β 

1 − 

γ

γ 
�−1
� 

 

�� 

1 + 
1 − 

β

β 
1 − 

β

β 
1 − 

γ

γ 
�−1 

, 1 

� 

with probability 1. 

This characterization is “tight” in the sense that simple examples reach any 
of the points not ruled out by these lemmas. 
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Sketch of the Proof of the Lemmas
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Sketch of the Proof of the Lemmas (continued)
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Main Results As Corollaries


Setting β = 0 and β = 1, and we conclude that q̂ must converge almost 
surely either to 0 or 1. 

Since qn/(1 − qn) conditional on θ = 0 and (1 − qn)/qn conditional on θ = 1 
are also martingales and converge to random variables with finite 
expectations, when θ = 0, we cannot almost surely converge to 1 and vice 
versa. 

Therefore, there is asymptotic learning with unbounded private beliefs (as 
before). 

Similarly, setting γ = 0 and γ = 1, we obtain the first theorem—with 
unbounded heterogeneity, there is always asymptotic learning regardless of 
whether privates beliefs are unbounded. 

In this case, asymptotic learning with unbounded private beliefs and 
homogeneous preferences has several “unattractive features”—large jumps 
in beliefs. 

Learning with unbounded heterogeneous preferences takes a much more 
“plausible” form—smooth convergence to the correct opinion. 
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Main Results As Corollaries (continued) 

Finally, when β > 0, β < 1, γ > 0 and γ < 1, then no social learning. 

But in this case, the region of convergence shifts out as heterogeneity 
increases: Why does this correspond to more social learning? 

Because it can be shown that the ex-ante probability of making the right 
choice 

1 � � 1 
2 

P q|θ = 0 +
2 

P [q|θ = 1] , 

is decreasing in γ and increasing γ—greater social learning. 
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A Model of Bayesian Communication Learning 

Effect of communication on learning: Acemoglu, Bimpikis, Ozdaglar (2009)


Two possible states of the world, θ ∈ {0, 1}


A set N = {1, . . . , n} of agents and a friendship network given


Stage 1: Network Formation


Additional link formation is costly, cij
n : cost incurred by i to link with j 

Induces the communication network G n = (N , En) 

Stage 2: Information Exchange (over the communication network G n) 

Each agent receives an iid private signal, si ∼ Fθ 

Agents receive all information acquired by their direct neighbors 
At each time period t they can choose: 
(1) irreversible action 0 (2) irreversible action 1 (3) wait 
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+ Additional Links=Communication network
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Stage 1: Forming the communication network 

Friendship network 
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Agent 1 forms the directed links (2, 1) and (6, 1) incurring the costs c12 and c16.

Networks: Lectures 22-23 Bayesian Communication Learning 

Stage 1: Forming the communication network 

Friendship network + Additional Links=Communication network 
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Stage 2: Information Exchange 
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Stage 2: Information Exchange 
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Stage 2: Information Exchange 
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Model


In this lecture: Focus on stage 2 

Agent i ’s payoff is given by 
n nδτ π if xi,τ = θ and xi,t = “wait” for t < τ 

ui (x ni , θ) = 
0 otherwise 

n
i = [xn ]t≥0: sequence of agent i ’s decisions, xn ∈ {0, 1, “wait”}i,t i,t 

δ: discount factor (δ < 1) 
x

τ : time when action is taken (agent collects information up to τ ) 
π: payoff - normalized to 1 

Preliminary Assumptions (relax both later): 

Information continues to be transmitted after exit. 
Communication between agents is not strategic 

Let 
Bi

n 
,t = {j =� i | ∃ a directed path from j to i with at most t links in G n}

All agents that are at most t links away from i in G n 

Agent i ’s information set at time t: Ii
n 
,t = {si , sj for all j ∈ Bi

n 
,t }. 

55 



� � 

Networks: Lectures 22-23 Bayesian Communication Learning 

Equilibrium and Learning 

Given a sequence of communication networks {G n} (society): 

Strategy for agent i at time t is σn : In → {“wait”, 0, 1}i,t i,t 

Definition 

A strategy profile σn,∗ is a Perfect-Bayesian Equilibrium if for all i and t, 

σn
i,
,
t 
∗ ∈ arg max E(y ,σn,∗ 

−i,t ) ui (x ni , θ)|I n 
i,t . 

y∈{“wait”,0,1} 

Let � 
1 if xi,τ = θ for some τ ≤ t 

Mn = i,t 0 otherwise 

Definition 

We say that asymptotic learning occurs in society {G n} if for every � > 0 �� � � �� � 
limn→∞ limt→∞ Pσn,∗ 

1 n 1 − Mn > � = 0 n i=1 i,t 
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Agent Decision Rule 

Lemma 

Let σn,∗ be an equilibrium and I i
n 
,t be an information set of agent i at time t. 

Then, the decision of agent i , xi
n 
,t = σi

n
,
,
t 
∗(Ii

n 
,t ) satisfies ⎧ ⎪⎨ 

, is 

log L(sj ) ≤ − log An
i,
,
t 
∗0, if log L(si ) + ,j∈Bn 

i,t 

log L(sj ) ≥ log An,∗ 
i,t ,1, if log L(si ) + n x = i,t j∈Bn 

i,t⎪⎩ “wait”, otherwise, 

n,∗ 
i,t dPσ (si θ=1) p

is the likelihood ratio of signal si , and An
i,
,
t 
∗ =where L(si ) = n,∗ 

i,t1−pdPσ (si θ=0) 

a time-dependent parameter. 

pi
n
,
,
t 
∗: belief threshold that depends on time and graph structure 

For today: 

Focus on binary private signals si 
β 

∈ {0, 1}
Assume L(1) = and L(0) = 1−β for some β > 1/2.1−β β 

57 



� �
� �

��� �� �� �� �� � � � 

Networks: Lectures 22-23 Bayesian Communication Learning 

Minimum Observation Radius 
Lemma 

The decision of agent i , xi
n 
,t = σi

n
,
,
t 
∗(Ii

n 
,t ) satisfies ⎧ ⎪⎪⎨ 

−1 
0, if ki

t 
,0 − ki

t 
,1 ≥ log An

i,
,
t 
∗ · log 1−

β
β , 

−1 xi
n 
,t (Ii

n 
,t ) = if ki

t 
,1 − ki

t 
,0 ≥ log An,∗ log β 

i,t ·1,⎪⎪⎩ ,1−β 

“wait”, otherwise, 

where ki
t 
,1 (ki

t 
,0) denotes the number of 1’s (0’s) agent i observed up to time t. 

Definition 

We define the minimum observation radius of agent i , denoted by di
n , as 

−1β ≥ log An,∗ 
i,t · logdn 

i Bn 
i,t Bn 

i,t = arg min . 
1 − βt 

Agent i receives at least |Bn
i 
| signals before she takes an irreversible actioni,dn 

Bi
n 
,dn : Minimum observation neighborhood of agent i 

i 
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A Learning Theorem 

Definition 

For any integer k > 0, we define the k-radius set, denoted by V n
k , as 

V n
k = {j ∈ N B ,d

n
j n

j
≤ k} 

Set of agents with “finite minimum observation neighborhood” 

Note that any agent i in the k-radius (for k finite) set has positive 
probability of taking the wrong action. 

Theorem 

Asymptotic learning occurs in society {G n if and only if } 

n
kV

lim = 0.lim 
k→∞ 

A “large” number of agents with finite obs. neigh. precludes learning. 

n→∞ n 
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Interpreting the Learning Condition 

Definition 

Agent i is called an (information) maven of society {G n n=1 if i has an infinite }∞
in-degree. Let MAVEN ({G n n=1) denote the set of mavens of society {G n}∞ }∞n=1. 

For any agent j , let dj
MAVEN ,n the shortest distance defined in 

communication network G n between j and a maven 
k ∈ MAVEN ({G n}∞n=1). 

Let W n be the set of agents at distance at most equal to their minimum 
dMAVEN ,n 

jobservation radius from a maven in G n, i.e., W n = {j ≤ dj
n}. 

Corollary 

W n = 1.Asymptotic learning occurs in society {G n n=1 if limn→∞ 
1}∞ n · 

“Mavens” as information hubs; most agents must be close to a hub. 
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Interpreting the Learning Condition (Continued) 

Definition 

Agent i is a social connector of society {G n n=1 if i has an infinite out-degree. }∞

Corollary 

Consider society {G n n=1 such that the sequence of in- and out-degrees is }∞
non-decreasing for every agent (as n increases), and 

lim 
MAVEN ({G n}∞n=1) = 0. 

n→∞ n 

Then, asymptotic learning occurs if the society contains a social connector within 
a short distance to a maven, i.e., 

dMAVEN ,n ≤ di
n , for some social connector i .i 

Unless a non-negligible fraction of the agents belongs to the set of mavens 
and the rest can obtain information directly from a maven, information 
aggregated at the mavens spreads through the out-links of a connector. 
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Relaxing the Information Flow Assumption 

Theorem 

Asymptotic learning occurs in society {G n

interrupted after exit if 

lim lim 

} even when information flows are 

V n 
k = 0. 

k→∞ n→∞ n 

Intuition: When there is asymptotic learning, no interruption of information 
flow for a non-negligible fraction of agents. 

The corollaries apply as above. 
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Relaxing the Nonstrategic Communication Assumption 

Theorem 

Asymptotic learning in society {G n} is an �-equilibrium if 

V n 
klim lim = 0. 

k→∞ n→∞ n 

Intuition: Misrepresenting information to a hub (maven) not beneficial, and 
thus at most a small benefit for most agents from misrepresenting their 
information. 

Therefore, if there is asymptotic learning without strategic communication, 
then there exists an equilibrium with strategic communication in which 
agents taking the right action without strategic communication have no 
more than � to gain by misrepresenting, and thus there exists an 
�-equilibrium with asymptotic learning. 
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Learning in Random Graph Models 

Focus on networks with bidirectional communication (corresponding 
to undirected graphs). 

Recall that asymptotic learning occurs if and only if for all but a 
negligible fraction of agents, the shortest path to a hub/maven is 
shorter than minimum observation radius. 

Then the following proposition is intuitive: 

Proposition 

Asymptotic Learning fails for 

(a) Bounded Degree Graphs, e.g., expanders. 
(b) Preferential Attachment Graphs (with high probability). 

Intuition: Edges form with probability proportional to degree, but there 
exist many low degree nodes. 
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Learning in Random Graph Models 

Proposition 

Asymptotic Learning occurs for 

(a) Complete and Star Graphs. 

(b) Power Law Graphs with exponent γ ≤ 2 (with high probability). 

Intuition: The average degree is infinite - there exist many hubs. 

(c) Hierarchical Graphs. 

Figure: Hierarchical Society. 
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