
MIT OpenCourseWare
http://ocw.mit.edu 

14.30 Introduction to Statistical Methods in Economics 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


1 
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Counting Rules and Probabilities 

Recall that with simple probabilities, each outcome is equally likely, and for a finite sample space, we can 
give the probability of an event A as 

n(A)
P (A) = 

n(S) 

We’ll now see how to make good use of counting rules to calculate these probabilities. 

Example 1 Draw two cards from a deck of 52 cards with replacement, assuming that each card is picked 
with equal probability. What is the possibility of drawing two different cards? 

S = {(A♣, A♣), (A♣, A♠), . . .} =⇒ n(S) = 522 

The event ”two different cards” consists of 

52! 
A = {(A♣, A♠), (A♣, A♥), . . .} =⇒ n(A) = = 52 · 51 

(52 − 2)! 

so that 
n(A) 52! 51 

P (A) = = = ≈ 0.98 
n(S) (52 − 2)!(52)2 52 

Alternatively, we could have used proposition 1 on probabilities: 

1 51 
P (A) = 1 − P (AC ) = 1 − P (”two cards are same”) = 1 − P (”2nd card same as 1st”) = 1 − = 

52 52 

In some other examples, computing the probability of an event through its complement may simplify the 
calculation a lot. 

Example 2 Suppose Oceania attacks the capital of Eurasia1 with 16 missiles, 8 of which carry a nuclear 
warhead. Suppose the Eurasian army can track all 16 projectiles and has 12 missiles each of which 
can intercept one incoming missile with absolute certainty, but can’t tell which of the missiles carry a 
conventional load. What is the combinatorial probability that Eurasia cannot avert disaster and at least 
one of the nuclear warheads reaches its target? What would be your intuitive guess? 

1The names are taken from Orwell’s novel ”1984”, so this is not supposed to be a real-world example. 
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Since in any event, exactly 4 projectiles reach their target, the sample space S consists of all combinations 
of 4 missiles out of 16. Therefore the number of elements of S is given by the binomial coefficient 

� � 

16 16! 
n(S) = = 

4 12!4! 

In order to evaluate the probability, one approach is to use the complement rule. The event complementary 
to A =”At least one nuclear warhead hits target” is AC =”All missiles hitting the target are conventional”, 
and the outcomes in AC are given by all combinations of 4 missiles out of 8 (the conventional ones), so 
that 

� � 

n(AC )
8 8! 

= = 
4 4!4! 

Therefore, 

12!4!8! 12! 8! 1 8 · 7 · 6 · 5 25 
P (A) = 1 − P (AC ) = 1 − = 1 − = 1 − = 

16!4!4! 16! 4! 16 · 15 · 14 · 13 1 26 

So it turns out that this probability is extremely close to one - I’m not sure whether you would have 
expected this, but despite being politically incorrect, this example shows that our intuitions may fail easily 
in combinatoric problems, last but not least because of the high numbers of possibilities. 

Example 3 The famous birthday ”paradox” is about a (once) popular party game: given you have a 
group of n friends, what is the probability that at least a pair of them has the same birthday (assuming 
that all birthdays are equally likely, which is actually only approximately true empirically)? Again, let’s 
look at the complementary event AC that each of your n friends has a different birthday: since this 
corresponds to drawing n out of 365 without replacement, we can use the corresponding formula 

365! 
n(AC ) = 

(365 − n)! 

so that we can calculate the probability P (A) of at least two of your friends having the same birthday: 

P (A) = 1 − P (AC ) = 1 − 
n(AC ) 

= 1 − 
365! 

n(S) (365 − n)!365n 

This formula is not yet particularly easy to read, so let’s just write down the probabilities in decimals for 
a few values of n: 

n 
5 
10 
15 
20 
25 
30 
50 
366 

P (A) 
0.027 
0.117 
0.253 
0.411 
0.569 
0.706 
0.97 
1 
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Many people find these probabilities very high, but it’s usually because one is tempted to start thinking 
about the problem by calculating the probability that any of your n friends has the same birthday as you. 
You can convince yourself that this probability is 

� �n � �n 

P (Ã) = 1 − 1 − 
1 364 

= 1 − 
365 365 

for which our list looks different: The reason for this discrepancy is that in the previous situation, A also 

n P (A) 
5 0.014 
10 0.027 
15 0.040 
20 0.053 
25 0.066 
30 0.079 
50 0.128 
366 0.634 

contained all pairs among your n friends, and that number went up very quickly. 

Independent Events 

Intuitively, we want to define a notion that for two different events A and B the occurrence of A does 
not ”affect” the likelihood of the occurrence of B, e.g. if we toss a coin two times, the outcome of the 
second toss should not be influenced in any way by the outcome of the first. In order to keep notation 
simple, we will from now on denote 

P (A ∩ B) = P (AB) 

Definition 1 The events A and B are said to be independent if 

P (A ∩ B) = P (A)P (B) 

From this you can see that independence is merely a property of the probability distribution, not neces­
sarily of the physical nature of the events. So while in some examples (e.g. the series of coin tosses) we 
have a good intuition for independence, in most cases we’ll have no choice but need to check the formal 
condition. 

Example 4 Say we roll a fair die once, what are the probabilities for the events 

A = {2, 4, 6} 

B = {1, 2, 3, 4} 

n(A)and their intersection? Counting outcomes, P (A) = 
n(S) = 3

6 =
1
2 , and similarly, P (B) = 4

6 =
2
3 . The 

probability of the intersection of events is 

2 1 
P (AB) = P ({2, 4}) = = = P (A)P (B)

6 3 

so the events are independent even though they resulted from the same roll. 
In order to see how independence depends crucially on the underlying probability distribution, now suppose 
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that the die had been manipulated so that P (6) = 38 
1
8 ., whereas for all other numbers n = 1, . . . , 5, P (n) = 

Then, by axiom (P3) on adding probabilities of disjoint events, 

1 1 3 5 4 1 
P (A) = + + = , P (B) = = 

8 8 8 8 8 2 

and 
2 1 5 

P (AB) = = < P (A)P (B) = 
8 4 16 

One interpretation of independence is the following: suppose we know that B has occurred, does that 
knowledge change our beliefs about the likelihood of A (and vice versa)? We’ll formalize this in the next 
section, and it will turn out that if A and B are independent, there is nothing about event A to be learnt 
from the knowledge that B occurred. 

Proposition 1 If A and B are independent, then A and BC are also independent. 

Proof: Since we can partition A into the disjoint events AB and ABC , we can write 

(P 3) Indep. 
P (ABC ) = P (A) − P (AB) = P (A) − P (A)P (B) = P (A)(1 − P (B)) = P (A)P (BC ) 

proving independence �


We can now extend the definition of independence to more than two events:


Definition 2 A collection of events A1, A2, . . . are independent if for any subset Ai1 , Ai2 , . . . of these

events (all indices being different)


P (Ai1 ∩ Ai2 ∩ . . .) = P (Ai1 ) · P (Ai2 ) · . . . 

E.g. for three events A, B, C, 

P (AB) = P (A)P (B), P (AC) = P (A)P (C), P (BC) = P (B)P (C) 

and 
P (ABC) = P (A)P (B)P (C) 

Example 5 Let the sample space be S = {s1, s2, s3, s4}, and P (si) = 1
4 for all outcomes. Then each of 

the events 
A = {s1, s2}, B = {s1, s3}, C = {s1, s4} 

occurs with probability 1
2 . The probability for the event A ∩ B is 

1 
P (AB) = P ({s1}) = = P (A)P (B)

4 

and likewise for any other pair of events, so the events are pairwise independent. However, taken together, 
the full collection is not independent since 

1 1 
P (ABC) = P ({s1}) = = = P (A)P (B)P (C)

4 8 

Intuitively, once we know that both A and B occurred, we know for sure that C occurred. 
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B = S' 
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3 Conditional Probability 

Suppose the occurrence of A affects the occurrence (or non-occurrence) of B and vice versa. How do we 
describe the probability of B given knowledge about A? - We already argued heuristically that if the 
events are independent, then A does not reveal any information about B. But what if it does? How do 
we change probabilities as a result? 

Example 6 If we throw a fair die, and I tell you that in fact the outcome was an even number, i.e that 
the event B = {2, 4, 6} occurred. What’s the probability of having rolled a 6? Since there are only three 
equally likely possibilities in B, 6 being one of them, we’d intuitively expect the answer to be 1

3 . Here we 

basically simplified the sample space, to S̃ = B = {2, 4, 6}, and calculated the simple probability for the 
redefined problem. 

Definition 3 Suppose A and B are events defined on S such that P (B) > 0. The conditional probability 
of A given that B occurred is given by 

P (A ∩ B)
P (A|B) = 

P (B) 

Intuitively, the numerator redefines which outcomes in A are possible once B is known to have occurred, 
the denominator does the same thing for the whole sample space. 

Figure 1: The Event A Conditional on B 

Remark 1 Conditional probability and independence: if A and B are independent, 

P (AB) P (A)P (B)
P (A|B) = = = P (A)

P (B) P (B) 

so B occurring tells us nothing about A, so the conditional probability is the same as the unconditional 
probability. 

Example 7 This example is adapted from Greg Mankiw’s blog:2 On platforms like Intrade, you can trade 
assets which pay 1$ if a given event (e.g. Yankees win the World Series) occurs. If the market works as 
it should, the prices of this type of assets at a given time t can be interpreted as probabilities given the 
information traders have at that point in time. On the political market on Intrade, you can trade assets 
for the events 

2http://gregmankiw.blogspot.com/2006/11/bayes-likes-obama 
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• Ai that candidate i wins the presidential elections (without conditioning on nomination) 

• Bi that candidate i wins the nomination of her/his party 

• Ck that the nominee of party k wins the election 

We can now use the probabilities which are implied by the asset for the corresponding event to answer the 
question what the market ”thinks” which candidate of either party has the highest probability of winning 
the presidential elections if nominated P (Ai|Bi) - i.e. nominating which candidate would give each party 
the highest chances of winning the presidency. 
We can (relatively) safely assume that a candidate who is not nominated by the party has no chances of 
winning the presidency, so that 

Ai ⊂ Bi =⇒ Ai ∩ Bi = Ai 

so that 
P (Ai ∩ Bi) P (Ai)

P (Ai|Bi) = = 
P (Bi) P (Bi) 

so that we only have to plug in the prices for the corresponding assets. Based on asset prices on February 
6 on the Intrade political markets, we get the following numbers (in the last column I report the values 
from Mankiw’s original blog entry, as of November 2006). 

candidate P (Ai) P (Bi) P (Ai|Bi) P̃Nov�06(Ai|Bi)

Clinton 28.7% 45.2% 63.5% 51%

Huckabee 0.5% 2.0% 25.0% NA

McCain 34.4% 93.0% 37.0% 63%

Obama 35.0% 53.0% 66.0% 88%

Paul 0.4% 1.2% 33% NA

Romney 1.2% 2.6% 46.2% 50%


In order to distinguish it from the conditional probabilities P (A|Bi), P (A) is also called the marginal 
probability of A. The relationship between marginal and conditional probabilities is given by the Law of 
Total Probability: 

Theorem 1 (Law of Total Probability) Suppose that B1, . . . , Bn is a partition of the sample space S 
such that P (Bi) > 0 for every i = 1, . . . , n. Then 

n 

P (A) = P (A|Bi)P (Bi) 
i=1 

for any event B. 

Proof: From the definition of a conditional probability, P (A|Bi)P (Bi) = P (A ∩ Bi) for any event Bi. 
Since B1, . . . , Bn is a partition of the sample space, (A ∩B1), . . . , (A ∩Bn) are disjoint and exhaustive for 
A - i.e. constitute a partition for A. Therefore, by the axiom (P3) on probabilities of unions of disjoint 
sets, n

i=1 P (A ∩ Bi) = P (A) � 

Example 8 In medical data we can often find that patients treated by older, and more experienced, heart 
surgeons have in fact higher post-operative death rates than those operated by younger surgeons - say 
we observe a death rate of 6.0% for experienced surgeons, and onlyl 5.5% for unexperienced surgeons. 
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Does this mean that the surgeons’ skill decreases with age? Probably not - let’s suppose there are four 
different types of procedures a surgeon may have to perform - single, double, triple, and quadruple bypass 
(the terminology refers to the number of coronary arteries that have to be bypassed artificially). The 
complexity of the procedure and the risk to the patient increase in the number of bypasses, and it might 
also be that the patients who are generally ”sicker” may tend to require a more complicated procedure. 
Suppose we are told that for each procedure, patients of the experienced surgeon face significantly lower 
death rates, but that the overall patient mortality is lower for unexperienced surgeons. In light of the law 
of total probability, how does that fit together? Let’s look at an example (these numbers are of course 
made up): 

Unexperienced Experienced 
Procedure Death Rate Percentage of Cases Death Rate Percentage of Cases 
Single Bypass 4.0% 50.0% 2.0% 25.0% 
Double Bypass 6.0% 40.0% 4.0% 25.0% 
Triple Bypass 10.0% 9.0% 6.0% 25.0% 
Quadruple Bypass 20.0% 1.0% 12.0% 25.0% 
Total 5.5% 100.0% 6% 100.0% 

In the notation of the Law of Total Probability, the overall death rate P (A) for, say, experienced 
surgeons can be computed from the death rate conditional on procedure Bi, P (A|Bi), and the base 
rates/proportions P (Bi) of cases corresponding to each procedure. 
We can see that since experienced surgeons are assigned a disproportionately large share of risky cases 
(presumably because you need more experience for these), their average (better: marginal) death rate is 
higher than that of unexperienced surgeons, even though they perform better conditional on each treatment 
category. This phenomenon is often referred to as a composition effect. 
So what is the practical importance of each type of probabilities? If you were to choose among surgeons 
for a bypass operation, the type of procedure should only depend on your health status, not whether the 
surgeon is experienced or not, so in that situation you should only care about the conditional probabilities. 
It’s harder to come up with a good use for the marginal death rates. 
In most statistical analysis, you’d in fact be interested in conditional death rates (e.g. if you are interested 
in the effect of experience on mortality), and the variable ”type of procedure” would be treated as what 
statisticians call a confounding factor. A classical problem in statistics and econometrics is that often 
many of the relevant confounding factors are not observed, and you’ll learn about ”tricks” of dealing with 
that problem. 

Remark 2 Another closely related concept is that of conditional independence, which is going to be very 
important in Econometrics. Two events A and B are said to be independent conditional on event C if 

P (AB|C) = P (A|C)P (B|C) 

It is important to note that 

• unconditional independence does not imply conditional independence 

• conditional independence does not imply unconditional independence 

i.e. whether A and B are independent depends crucially on what we are conditioning on. There’ll be an 
exercise with a counterexample on the next problem set. 
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4 Conditional Independence (not covered in lecture) 

We can extend the definition of independence to conditional probabilities: 

Definition 4 Two events A and B are said to be independent conditional on event C if the conditional 
probabilities satisfy 

P (AB|C) = P (A|C)P (B|C) 

This definition corresponds exactly to that of unconditional independence which we looked at before, only 
that we restrict ourselves to the new sample space S� = C. The notion of conditional independence is 
going to play an important role later on in econometrics, so it deserves a special mention. As a technical 
point, it is important to notice that conditional independence does not imply unconditional independence, 
or vice versa. In other words, whether two events are independent depends crucially on what else we 
are conditioning on. I mentioned this in passing in the last lecture, and I’m now going to provide the 
following example as an illustration: 

Example 9 Let’s look again at a roll of a fair die, i.e. S = {1, 2, 3, 4, 5, 6}, where each outcome occurs 
with probability 1

6 . 

(1) Making two independent events dependent: Consider the events A = {1, 2, 3, 4} and B = {2, 4, 6}. 
We already saw in a previous example that these events are independent: 

4 3 1 
P (A)P (B) = P ({1, 2, 3, 4})P ({2, 4, 6}) = · = = P ({2, 4}) = P (AB)

6 6 3 

Now let event C = {3, 6}. Then 

P (AC) P ({3}) 1 P ({6}) P (BC)
P (A|C) = = = = = = P (B|C)

P (C) P ({3, 6}) 2 P (C) P (C) 

However, 
P (∅)

P (AB|C) = = 0 �= P (A|C)P (B|C)
P (C) 

i.e. A and B are not independent conditional on C since their intersections with C are disjoint. 

(2) Making two dependent events independent: Let D = {2, 3, 4} and E = {2, 4, 6}. We can check that 
D and E are dependent: we can see that P (D) = P (E) = 1

2 . However, 

1 1 
P (DE) = P ({2, 4}) = = = P (D)P (E)

3 4 

But if we condition on F = {3, 4, 5, 6}, 

P ({4}) 1 
P (DE|F ) = = 

P ({3, 4, 5, 6}) 4 

whereas 
P ({3, 4}) P ({4, 6}) 1 1 1 

P (D|F )P (E|F ) = · = · = 
P ({3, 4, 5, 6}) P ({3, 4, 5, 6}) 2 2 4 

so that by conditioning on F , D and E became independent. 
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