
MIT OpenCourseWare
http://ocw.mit.edu 

14.30 Introduction to Statistical Methods in Economics 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� � 

� 

� 

14.30 Introduction to Statistical Methods in Economics 
Lecture Notes 7 

Konrad Menzel 

February 26, 2009 

1 Joint Distributions of 2 Random Variables X, Y (ctd.) 

1.1 Continuous Random Variables 

If X and Y are continuous random variables defined over the same sample space S. The joint p.d.f. of 
(X, Y ), fXY (x, y) is a function such that for any subset A of the (x, y) plane, 

P ((X, Y ) ∈ A) = fXY (x, y)dxdy 
A 

As in the single-variable case, this density must satisfy 

fXY (x, y) ≥ 0 for each (x, y) ∈ R2 

and 
� ∞ ∞ 

fXY (x, y)dxdy = 1 
−∞ −∞ 

Note that 

• any single point has probability zero 

• any one-dimensional curve on the plane has probability zero 

Example 1 A UFO appears at a random location over Wyoming, which - ignoring the curvature of the 
Earth - can be described quite accurately as a rectangle of 276 times 375 miles. The position of the UFO 
is uniformly distributed over the entire state, and can be expressed as a random longitude X (ranging 
from -111 to -104 degrees) and latitude Y (with values between 41 and 45 degrees). 
This means that the joint density of the coordinates is given by 

1 

fXY (x, y) = 28 if − 111 ≤ x ≤ −104 and 41 ≤ y ≤ 45 
0 otherwise 

If the UFO can be seen from a distance of up to 40 miles, what is the probability that it can be seen from 
Casper, WY (which is roughly in the middle of the state)? 
Let’s look at the problem graphically: This suggests that the set of locations for which the UFO can be 
seen from Casper can be described as a circle with a 40-mile radius around Casper. Also, for the uniform 
density, the probability of the UFO showing up in a region A (i.e. the integral of a constant density over 
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Figure 1: The UFO at (x, y) can be seen    
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from Casper, WY

A) of the state is proportional to the area of A. Therefore, we don’t have to do any integration, but finding 
the probability reduces to a purely geometric exercise. We can calculate the probability as 

Area(”less than 40 miles from Casper”) 402π 
P (”less than 40 miles from Casper”) = = ≈ 4.9% 

Area(”All of Wyoming”) 375 · 276 

You should notice that for the uniform distribution, there is often no need to perform complicated inte­
gration, but you may be able to treat everything as a purely geometric problem. 

Unlike in the last example, typically, there’s no way around integrating the density function in order to 
obtain probabilities, since any nonconstant density re-weights different regions in terms of probability 
mass. We’ll do this in the clean, systematic fashion in the following example: 

Example 2 Suppose you have 2 spark plugs in your lawn mower, and let X be the life of spark plug 1, 
and Y the life of spark plug 2. Suppose we can describe the distribution by 

λ2e−λ(x+y) if x ≥ 0 and y ≥ 0 
fXY (x, y) = 

0 otherwise 

Figure 2 on page 2 shows what the joint density looks like. 
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Figure 2: Joint Density of Lives X and       
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In fact, this density can be derived from the assumption that the spark plugs fail independently of one 
another at a fixed rate λ, which doesn’t change over their lifetime. 
If the lawn mower is going to work as long as either spark plug works, what is the probability that the 
lawn mower fails within 1000 hours? 
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Figure 3: The Event “Lawn Mower Fails before 1000 hrs.” in first situation 

� 1000 � 1000 

P (X ≤ 1000, Y ≤ 1000) = λ2 e −λ(x+y)dydx 
0 0 

� 1000 � 1000 

= λ2 e −λx e −λydydx 
0 0 

� 1000 � 1000 

= λe−λx λe−λydy dx 
0 0 

� 1000 

= λe−λx 
� 

1 − e −1000λ
� 

dx 
0 

� �2 
= 1 − e −1000λ

What is that probability if the second spark plug is only used if the first one fails, i.e. how do we calculate 
P (X + Y ≤ 1000)? Note that this only changes the “event” we care about, i.e. the region of R2 we 
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Figure 4: The Event “Lawn Mower Fails      
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before 1000 hrs.” in second situation 

integrate over, but we still integrate the same density. 

� 1000 � 1000−x 

P (X + Y ≤ 1000) = λ2 e −λx e −λydy dx 
0 0 

� 1000 � 1000−x 

= λe−λx λe−λydy dx 
0 0 

3 

Image by MIT OpenCourseWare.



� � 

� � 

� 

� 

� 1000 � � 

= λe−λx 1 − e −λ(1000−x) dx 
0 

� 1000 

= λ 
� 

e −λx − e −1000λ
� 

dx 
0 

= 1 − e −1000λ − 1000λe−1000λ = 1 − (1 + 1000λ)e −1000λ 

Again, events over continuous bivariate random variables correspond to areas in the plane, and we find 
probabilities by integrating the density over those areas. 

2 Joint c.d.f. of 2 Random Variables X, Y 

I’ll just give definitions. We are not going to use this a lot in this class, but you should have seen this. 

Definition 1 The joint c.d.f. for random variables (X, Y ) is defined as the function FXY (x, y) for 
(x, y) ∈ R2 

FXY (x, y) = P (X ≤ x, Y ≤ y) 

We compute probabilities from joint c.d.f.s as follows 

P (a ≤ X ≤ b, c ≤ Y ≤ d) = F (b, d) − F (a, d) − F (b, c) + F (a, c) 

We have to add in the last term because in a sense, it got subtracted off twice before. 
Joint c.d.f.s are related to p.d.f.s in the following way: for continuous random variables, 

y x 

FXY (x, y) = fXY (u, v)dudv 
−∞ −∞ 

∂2 

fXY (x, y) = FXY (x, y)
∂y∂x 

In the discrete case, 

FXY (x, y) = fXY (u, v) 
u≤x v≤y 

3 Marginal p.d.f.s 

If we have a joint distribution, we may want to recover distribution of one variable X. 
If X and Y are discrete random variables with joint p.d.f. FXY , then 

fX(x) = fXY (x, y) 

all y 

fY (y) = fXY (x, y) 

all x 

If X and Y are continuous, we’ll essentially replace summation by integration, so that 
� ∞ 

fX(x) = fXY (x, y)dy 
−∞ 

� ∞ 

fY (y) = fXY (x, y)dx 
−∞ 

(1) 
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Example 3 This example is based on real-world data extra-marital affairs collected by the Redbook mag­
azine in 1977.1 In the survey, individuals were asked to rate their marriage on a scale from 1 (unhappy) 
to 3 (happy), and to report the number of extra-marital affairs, divided by the number of years married. 
For now let’s look at the joint distribution of ”marriage quality”, X, with duration of marriage in years, 
Y . We can start from the ”cell” probabilities given by the joint p.d.f., and then fill in the marginal p.d.f.s

on the left and at the bottom of the table:


It is interesting to note that, even though the marginal distributions are relatively even, the joint distribu-


Y 

fXY 1 8 12 fX 

1 4.66% 11.48% 12.98% 29.12% 
X 2 5.16% 14.81% 12.31% 32.28% 

3 13.48% 16.47% 8.65% 38.60% 
fY 23.30% 42.76% 33.94% 100.00% 

tion seems to be concentrated along the bottom left/top right diagonal, with the joint p.d.f. taking much 
lower values in the top-left and bottom-right corners of the table. 

Example 4 Recall the example with the two spark plugs from last time. The joint p.d.f. was 

λ2e−λ(x+y) if x ≥ 0 and y ≥ 0 
fXY (x, y) = 

0 otherwise 

The marginal density of X is 
� ∞ ∞ 

fX(x) = fXY (x, y)dy = λ2 e −λ(x+y)dy 
−∞ 0 

� ∞ 

= λe−λx λe−λydy = λe−λx[1 − 0] = λe−λx 

0 

Similarly, 
fY (y) = λe−λy 

Independence 

Recall that we said that two events A and B were independent if P (AB) = P (A)P (B). Now we’ll define 
a similar notion for random variables. 

Definition 2 We say that the random variables X and Y are independent if for any regions A, B ⊂ R, 

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) 

Note that this requirement is very strict: we are looking at events of the type X ∈ A and Y ∈ B and 
require that all pairs of them are mutually independent. 
This definition is not very practical per se, because it may be difficult to check, however if X and Y are 
independent, it follows from the definition that in particular 

FXY (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) = FX(x)FY (y) 

From this, it is possible to derive the following condition which is usually much easier to verify 

1Data available at http://pages.stern.nyu.edu/ wgreene/Text/Edition6/tablelist6.htm 
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Proposition 1 X and Y are independent if and only if their joint and marginal p.d.f.s satisfy 

fXY (x, y) = fX(x)fY (y) 

Proof: For discrete random variables, this follows directly from applying the definition to A = {x} 
and B = {y}. For continuous random variables, we can show that if X and Y are independent, we can 
differentiate the equation 

FXY (x, y) = FX(x)FY (y) 

on both sides in order to obtain 

∂2 ∂2 ∂ 
fXY (x, y) = FXY (x, y) = [FX(x)FY (y)] = fX(x)FY (y) = fX(x)fY (y)

∂y∂x ∂y∂x ∂y 

Conversely, if the product of the marginal p.d.f.s equals the joint p.d.f., we can integrate 

P (X ∈ A, Y ∈ B) = fXY (x, y)dydx = fX(x)fY (y)dydx 
A B A B 

= fX(x)dx fY (y)dy 
A B 

so that the condition on the marginals implies independence, and we’ve proven both directions of the 
equivalence � 

Example 5 Going back to the data on extra-marital affairs, remember that we calculated the marginal 
p.d.f.s of reported ”marriage quality”, X, and years married, Y as 

fX(1) = 29.12%, fX(2) = 32.28%, fX(3) = 38.60% 

and 
fY (1) = 23.30%, fY (8) = 42.76%, fY (12) = 33.94% 

What should the joint distribution look like if the two random variables were in fact independent? E.g. 

f̃  
XY (3, 1) = fX(3)fY (1) = 38.60% · 23.30% = 8.99% 

The actual value of the joint p.d.f. at that point was 13.48, so that apparently, the two variables are 
not independent. We can now fill in the remainder of the table under the assumption of independence: 
Comparing this to our last table we see some systematic discrepancies - in particular, the constructed 

Y 

f̃  
XY 1 8 12 fX 

1 6.78% 12.45% 9.88% 29.12% 
X 2 7.52% 14.81% 10.96% 32.28% 

3 8.99% 16.50% 13.10% 38.60% 
fY 23.30% 42.76% 33.94% 100.00% 

joint p.d.f. f̃  
XY is not as strongly concentrated on the diagonal, which seemed to be a noteworthy feature 

of the actual joint p.d.f.. 
But does this really mean that X and Y are not independent? One caveat is that we calculated the 
probabilities in the joint p.d.f. from a sample of ”draws” from the underlying distribution, so there is 
some uncertainty over how accurately we could measure the true cell probabilities. In the last part of the 
class, we will see a method of testing formally whether the differences between the ”constructed” and the 
actual p.d.f. are large enough to suggest that the random variables X and Y are in fact not independent. 
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Example 6 Recall the example with the two spark plugs from last time. The joint p.d.f. was 

λ2e−λ(x+y) if x ≥ 0 and y ≥ 0 
fXY (x, y) = 

0 otherwise 

and in the last section we derived the marginal p.d.f.s 

fX(x) = λe−λx 

fY (y) = λe−λy 

Therefore, the product is 
fX(x)fY (y) = λ2 e −λx e −λy = fXY (x, y) 

so that the lives of spark plug 1 and 2 are independent. 

Remark 1 The condition on the joint and marginal densities for independence can be restated as follows 
for continuous random variables: Whenever we can factor the joint p.d.f. into 

fXY (x, y) = g(x)h(y) 

where g(·) depends only on x and h(·) depends only on y, then X and Y are independent. In particular, 
we don’t have to calculate the marginal densities explicitly. 

Example 7 Say, we have a joint p.d.f. 

ce −(x+2y) if x ≥ 0, y ≥ 0 
fXY (x, y) = 

0 otherwise 

Then we can choose e.g. g(x) = ce−x and h(y) = e−2y, and even though these aren’t proper densities, 
this is enough to show that X and Y are independent. 

Example 8 Suppose we have the joint p.d.f. 

cx2y if x2 ≤ y ≤ 1 
fXY (x, y) = 

0 otherwise 

Can X and Y be independent?

Even though in either case (i.e. whether x 2 ≤ y ≤ 1 holds or whether it doesn’t) the p.d.f. factors into

functions of x and y (for the zero part, that’s trivially true), we can also see that the support of X depends

on the value of Y , and therefore, X and Y can’t be independent - e.g. if X ≥ 2

1 , we must have Y ≥ 14 ,

so that 

� � � � � �


1 1 1 1 
P X ≥ , Y ≤ = 0 < P X ≥ P Y ≤ 

2 4 2 4 

Note that the joint support of two random variables has to be rectangular (possibly all of R2) in order 
for X and Y to be independent: if it’s not, for some realizations of X, certain values of Y would be ruled 
out which could occur otherwise. But if that were true, knowing X does give us information about Y , so 
they can’t be independent. However, this condition on the support alone does not imply independence. 
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