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Functions of 2 or more Random Variables 

Let’s recap what we have already learned about joint distributions of 2 or more random variables, say 
X1, X2, . . . , Xn 

• if X1, . . . , Xn are discrete, their joint p.d.f. is given by 

fX1 ,...,Xn (x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn) 

• if X1, . . . , Xn are continuous, their joint p.d.f. is a positive function fX1 ,...,Xn (x1, . . . , xn) such that 

P (X1, . . . , Xn) ∈ D = . . . fX1,...,Xn (x1, . . . , xn)dx1 . . . dxn 
D 

for any D ⊂ Rn . 

• X1, . . . , Xn are independent if 

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) · . . . P (Xn ∈ An) 

recall that this is equivalent to 

fX1 ,...,Xn (x1, . . . , xn) = fX1 (x1) · . . . fXn (xn) 

We are now going to look at how we can generalize from the univariate case discussed above to 2 or more 
dimensions. 

As for the single-dimensional case we’ll again distinguish three cases: 

1. underlying variables X1, . . . , Xn discrete 

2. underlying variable X1, . . . , Xn continuous 

3. X continuous and u(X1, . . . , Xn) is an n-dimensional one-to-one function 
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1.1 Discrete Case 

Suppose X1, . . . , Xn are discrete with joint p.d.f. fX1,...,Xn (x1, . . . , xn), and Y1, . . . , Ym are given by m 

functions 

Y1 = u1(X1, . . . , Xn) 

. . . 

Ym = um(X1, . . . , Xn) 

If we let 
Ay := {(x1, . . . , xn) : r1(x1, . . . , xn) = y1, . . . , um(x1, . . . , xn) = ym} 

then the joint p.d.f. of Y1, . . . , Ym is given by 

fY1,...,Ym (y1, . . . , ym) = fX1,...,Xn (x1, . . . , xn) 
(x1 ,...,xn)∈Ay 

Example 1 (Sum of Binomial Random Variables) Suppose X ∼ B(m, p) and Y ∼ B(n, p) are 
independent binomial random variables with p.d.f.s 

fX (k) = 
m

p k(1 − p)m−k 

k 

fY (k) = 
n

p k(1 − p)n−k 

k 

If we define Z = X + Y , what is the p.d.f. fZ (z)? Since X is the number of successes in a sequence of 
m independent trials, and Y the number of successes in n trials, both with the same success probability, 
a first guess would be that then Z should just be the number of successes in m + n trials with success 
probability p, i.e. Z ∼ B(m + n, p). This turns out to be true, but we’ll first have to check this formally: 

P (Z = z) = P ({X = 0, Y = z} or {X = 1, Y = z − 1} . . . or {X = z, Y = 0}) 
z z 

= P (X = k, Y = z − k) = P (X = k)P (Y = z − k) 
k=0 k=0 

z � � � � 

= 
m

p k(1 − p)m−k n
p z−k(1 − p)n−z+k 

k z − k 
k=0 

z � � � � 

= 
� m n

p z(1 − p)n−z 

k z − k 
k=0 

Now, the term pz(1 − p)n−z doesn’t depend on k, so we can pull it out of the sum. On the other hand, I 
claim that 

z � � � � � � 

� m n m + n 
= 

k z − k z 
k=0 

We can in fact show this using counting rules: by the multiplication rule and the formula for combinations, 
m n 

the term corresponds to the number of different sets we can draw which contain k 
k z − k 

elements from a group with m members, and z−k elements from another group with n members. Summing 
over all values of k, we get the total number of ways in which we can draw a set of z elements from both 
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sets combined (i.e. a set with m + n members), which, according to the formula for combinations, equals 
m + n 

, which is the right-hand side of the equality we wanted to prove. 
z 

Putting bits and pieces together, 

P (Z = z) = 
m + n

p z(1 − p)n−z 

z 

so that indeed, Z ∼ B(m + n, p). 
As a cautious note, in general the sum Z of two independent random variables X and Y from the same 
family of distributions - in this case the binomial - will not belong to that same family. In that respect, the 
binomial distribution is a very special case, and there are only very few other commonly used distributions 
which have that property. E.g. if X ∼ B(m, pX ) and Y ∼ B(n, pY ) with pX � pY , the derivation above = 
is not going to work anymore. 

1.2 Continuous Case 

Suppose X1, . . . , Xn are continuous with joint p.d.f. fX1,...,Xn (x1, . . . , xn), and Y (let’s stick to only one 
variable to keep notation simple) is given by a function 

Y = u(X1, . . . , Xn) 

If we let 
By := {(x1, . . . , xn) : u(x1, . . . , xn) ≤ y} 

then the p.d.f. of Y is given by 

FY (y) = fX1,...,Xn (x1, . . . , xn)dx1 . . . dxn 
(x1 ,...,xn )∈By 

2 Change of Variables Formula for One-to-One Transformations 

This is again a special case, which works only for continuous variables: Let A be the support of X1, . . . , Xn, 
i.e.	

� � 

P (x1, . . . , xn) ∈ A = 1 

and B the induced support of Y1, . . . , Yn, i.e. 

(Y1, . . . , Yn) ∈ B ⇔ (X1, . . . , Xn) ∈ A 

Suppose Y1, . . . , Yn are generated from X1, . . . , Xn from a differentiable one-to-one transformation 

Y1 = u1(X1, . . . , Xn) 

. . . 

Yn = un(X1, . . . , Xn) 

i.e. every value of (x1, . . . , xn) ∈ A is mapped to a unique element (y1, . . . , yn) ∈ B. We can then define 
the inverse [s1(x1, . . . , xn), . . . , sn(x1, . . . , xn)]� such that 

X1 = s1(Y1, . . . , Yn) 

. . . 

Xn = sn(Y1, . . . , Yn) 
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If s1(·), . . . , sn(·) are differentiable on B, we define the matrix 

⎛ ∂ ∂ ⎞ 

∂y1 
s1 . . . 

∂yn 
s1 

⎜ . . ⎟

J = 
⎝ 

.. .. ⎠ 

∂ ∂ . . . 
∂y1 

sn ∂yn 
sn 

This matrix of partial derivatives is also called the Jacobian of the inverse transformation. For those of 
you who didn’t take Linear Algebra, it’s sufficient if you can work with the 2-by-2 case. You should also 
know that for a two-by-two matrix A, the determinant is given by 

a b 
det(A) = det = ad − bc 

c d 

Proposition 1 If the mapping of X1, . . . , Xn to Y1, . . . , Yn as outlined above is one-to-one and has a 
differentiable inverse s1(·), . . . , sn(·), then the joint p.d.f. of Y1, . . . , Yn is given by 

fX1 ,...,Xn (s1(y), . . . , sn(y)) · | det(J)| if y ∈ B = support(Y1, . . . , Yn)
fY1,...,Yn (y1, . . . , yn) = 

0 otherwise 

2.1 Linear Transformation 
⎡ ⎤ 

X1 

Let X be a vector of random variables, i.e. X = 
⎢

⎣ 

.

.. 
⎥

⎦
, and 

Xn 

⎡ ⎤ 

Y1 

Y = 
⎢

⎣ 

.

.. 
⎥

⎦ 
= AX 

Yn 

for an n × n matrix A with det(A) �= 0. Then the linear mapping Y = AX is one-to-one (since the 
matrix has an inverse), and we can find the joint distribution of Y using the change of variables formula 

fY1,...,Yn (y1, . . . , yn) = fX1,...,Xn (x1, . . . , xn)| det(A−1)| =
1 

fX1,...,Xn (x1, . . . , xn)
| det(A)| 

Example 2 To see how this matters in economics, suppose we have a simple (partial equilibrium) model 
for the market for orange juice in Boston. Firms are willing to supply quantity qs as a linear function of 
price p with coefficients αs and βs 

qs = αs + βsp + us 

where us is a random variable (say, sunshine hours in Florida). Consumers demand quantity qd given 
another random shock ud (say income): 

qd = αd − βdp + ud 

In equilibrium, supply equals demand, i.e. prices are such that qs = qd = q, and price and quantity are 
jointly determined by the following relationship 

� � � � � � � � 

1 −βs q αs us = + 
1 βd p αd ud 
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We may know or postulate the joint p.d.f. fU (us, ud) of the shocks (ud, us), from which we can derive 
the joint distribution of price and quantity. This joint p.d.f. is going to depend crucially on the Jacobian 
(which is the matrix on the left-hand side). In this case, det(J) = βd + βs, so that if supply and/or 
demand have a nontrivial slope, the transformation from the shocks to price and quantity is one-to-one, 
and the resulting joint p.d.f. is 

fPQ(p, q) = fU (u1(p, q), u2(p, q))|βs + βd| 

This is a little too far beyond what we are going to cover in this class, but the Jacobian term |βs + βd| 
captures the interdependence of price and quantity through the market equilibrium. It turns out to be 
the source of what in 14.32 will be called the ”simultaneity problem” which makes it very difficult to 
estimate supply and demand separately from market outcomes. This is one of the fundamental problems 
in econometrics. 

2.2 Distribution of X + Y (Convolution) 

Suppose X and Y are independent continuous random variables with p.d.f.s fX (x) and fY (y), respectively, 
so that the joint p.d.f. of the random variables is fXY (x, y) = fX (x)fY (y). What is the p.d.f. of 
Z = X + Y ? 

Example 3 Remember that we already did an example like this in class: we were looking at the sum of 
the lives of two spark plugs in a lawnmower, and it turned out that the probability P (X + Y ≤ z) was 
the integral of the joint density fXY (x, y) over the triangular area defined by {(x, y) : y ≤ z − x}. So the 
c.d.f. of Z is given by 

� 

∞ 
� z−x � 

∞ 
� z−x � 

∞ 

FZ (z) = P (X+Y ≤ z) = fXY (x, y)dydx = fX (x)fY (y)dydx = fX (x)FY (z−x)dx 
−∞ −∞ −∞ −∞ −∞ 

From this, we can derive the density of Z, 

d 
� 

∞ 

fZ (z) = FZ (z) = fX (x)fY (z − x)dx 
dz −∞ 

The random variable Z = X + Y is also called the convolution of X and Y . Note that the last formula 
is valid only for the sum of independent random variables. 

Example 4 The discussion in the previous example was again along the lines of the ”2-step” method, 
and one might wonder whether it would also be possible to use the shortcut through the formula for 
transformations of variables. 
The mapping from (X, Y ) to Z is clearly not one-to-one, so we can’t use the formula for transformations 
of variables right away. However, we can do the following ”trick”: define 

Z = u1(X, Y ) = X + Y 

W = u2(X, Y ) = Y 

Then, the inverse transformation is defined as 

X = s1(Z, W ) = Z − W 

Y = s2(Z, W ) = W 

Then, 
1 −1 

detJ = det = 1 
0 1 
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Therefore 

fZW (z, w) = fXY (s1(z, w), s2(z, w)) = fX (s1(z, w))fY (s2(z, w)) = fX (z − w)fY (w) 

We can now obtain the marginal p.d.f. of Z by integrating the joint p.d.f. over w 

� 

∞ 

fZ (z) = fX (z − w)fY (w)dw 
−∞ 

which is the same formula as that obtained from the previous derivation. 

Example 5 We already saw several instances of the exponential distribution (e.g. in the lawnmower 
example). Let X and Y be independent exponential random variables with marginal p.d.f.s 

e−x if x ≥ 0 e−y if x ≥ 0 
fX (x) = fY (y) = 

0 otherwise 0 otherwise 

By the last formula, the p.d.f. of Z = X + Y is given by 

� 

∞ 

fZ (z) = fX (z − w)fY (w)dw 
−∞ 

� z 

= e −(z−w)e −wdw 
0 

� z 

= e −z dw = ze −z 

0 

where integration limits in the second step come from the fact that the support of X and Y is restricted 
to the positive real numbers, i.e. for z < 0, fX (z) is zero, whereas for z > w, fY (z − w) becomes zero. 
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