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Properties of Medians and Percentiles 

We defined the median of a random variable via 

1 
P (X < median(X)) = 

2 

When X is discrete or has point masses that generate jumps in the c.d.f., this definition may not be 
useful, so in the more general case, we define the median as 

1 
median(X) := min m ∈ R : P (X ≤ m) ≥ 

2 

The change with respect to the narrower definition is that if the c.d.f. has a discontinuity which makes 
it ”leap” over the value 1

2
, just locate the median at the point of that discontinuity. We can also define 

other percentiles of the distribution of X: 

Definition 1 For a random variable X, the α quantile is given by 

q(X, α) := min {q ∈ R : P (X ≤ q ≥ α} 

We also call q(X, p/100) the pth percentile. 

Note that following this definition, the median corresponds to the 50th percentile. Other frequently 
used quantiles are deciles (p = 10, 20, 30, . . . , 90) and quartiles (p = 25, 50, 75). 

Now we won’t spend as much time on properties of quantiles as we did for expectations, but I’d just 
like to point out two important ways in which the median behaves very differently from the expectation: 

For one, we saw from Jensen’s Inequality that for a function u(X), the expectation E[u(X)] depends 
a lot on the curvature of u(x) in the regions where the probability mass of X lies. Generally, the median 
median(u(X)) will also be different from u(median(X)), but there is a notable exception: 

Proposition 1 Suppose u(x) is strictly increasing in the support of X. Then 

median(u(X)) = u(median(X)) 

Proof: The median of X satisfies P (X < median(X)) = 1

2
. Since u(x) is strictly increas­

ing, the event X < m is identical to the event u(X) < u(m) for any fixed number m. Therefore, 
P (u(X) < u(median(X)) = P (X < median(X)) 1

2
= , so that u(median(X)) is indeed the median of 

u(X) � 

1 



Intuitively, the median is based only on ordinal properties of the random variable which are preserved 
by any strictly increasing transformation. 

We also saw that expectations were linear in the sense that the expectation of a linear function of 
multiple random variables was shown to be equal to that same linear function of the expectations. For 
medians this is no longer true as the following example shows: 

Example 1 Suppose X1 and X2 are discrete random variables which are from the same marginal distri­
bution 

⎧ 

⎨ 
0.6 if x = 0 

fX (x) = 0.4 if x = 1 
⎩ 

0 otherwise 

and independent of each other. Then Y = X1 + X2 can take the values 0, 1, and 2, and has p.d.f. 

⎧ 

⎪ 
0.36 if x = 0 

⎪ 

⎨ 

0.48 if y = 1 
fY (y) = 

⎪ 
0.16 if y = 2 

⎪ 

⎩ 

0 otherwise 

The median of X1 and X2 is zero, however median(Y ) = 1 � 0 + 0 = median(X1) + median(X2).= 

More generally, the quantiles of averages may also differ from averages of quantiles. The following 
example gives another very practical interpretation of this insight (thanks to Aleksandr Tamarkin for 
providing the following numerical example): 

Example 2 Say you are taking the GRE, a standardized test which consists of three components, verbal 
X1, analytic X2, and quantitative X3. Your score is above the 90th percentile for each section of the test. 
Does this mean that you are also above the 90th percentile for the overall score? The general answer is 
no. 

Suppose, including yourself, there are 100 test takers, and the distribution of scores is as follows: 84 
test takers don’t get a single point in any section, you got 250 points in each of the three sections, and 
there are three other types of test takers, each with somewhat savant-like insular abilities in only one 
of the three areas. More specifically, 5 people are extremely verbally gifted and score 800 on the verbal 
part, but 0 everywhere else, another 5 get 800 on the analytic part, and yet another 5 get 800 on the 
quantitative part, but zero in all other sections. In sum, the joint distribution of scores is (note that this 
is very far from the typical distribution of GRE scores...) 

⎧ 

⎪ 
0.84 (x1, x2, x3) = (0, 0, 0) 

⎪ 

⎪ 

⎪ 

⎪ 
0.01 (x1, x2, x3) = (250, 250, 250) (you) 

⎪ 

⎨ 

0.05 (x1, x2, x3) = (800, 0, 0) 
fX1 ,X2,X3 (x1, x2, x3) = 

⎪ 
0.05 (x1, x2, x3) = (0, 800, 0) 

⎪ 

⎪ 

⎪ 

⎪ 
0.05 (x1, x2, x3) = (0, 0, 800) 

⎪ 

⎩ 

0 otherwise 

So you are at least at the 95th percentile for each part, but for 15 other test takers, the total score 
is 800, whereas yours is only 750, so you are only at the 85th percentile with respect to the overall score 
across the three sections. 

2 



� � 

� 

� � 

� � 

� 

� � 

2 Variance 

The variance is a measure of the dispersion of a random variable. 

Definition 2 The variance of a random variable X is given by 

2
Var(X) = E (X − E[X])

Sometimes we also denote the variance by σ2(X) = Var(X). 

Property 1 Var(X) = 0 if and only if P (X = c) = 1 for some constant c. 

Property 2 If Y = aX + b, then 
VarY = a 2Var(X) 

Proof: Again, we’ll only look at the continuous case. Using our previous results on expectations 

� 

∞ 
� 

∞ 

Var(Y ) = (aX + b − E[aX + b])2fX (x)dx = (ax − aE[X])2fX (x)dx 
−∞ −∞ 

� 

∞ 

= a 2 (x − E[X])2fX (x)dx = a 2Var(X) 
−∞ 

It is often convenient for the measure of dispersion to have the same units as the random variable. 
However, this last result implies that the unit of Var(X) will be the square of the unit of X. Therefore, 
we often use the standard deviation σ(X) instead, 

σ(X) := Var(X) 

Property 3 

Var(X) = E[X2] − E[X]2 

Proof: 

Var(X) = E (X − E[X])
2 

= E X2 − 2XE[X] + E[X]2 

= E[X2] − 2E[X]E[X] + E[X]2 = E[X2] − E[X]2 

Property 4 If Y = a1X1 + a2X2 + . . . + anXn + b and X1, . . . , Xn are independent, then 

Var(Y ) = a 2Var(X1) + a 2Var(X2) + . . . + a 2 Var(Xn)
1 2 n

Example 3 Suppose X is a discrete random variable with p.d.f. 

1 if x ∈ {−2, 0, 1, 3, 4}
fX (x) = 5 

0 otherwise 

If we define Y = 4X − 7, what is the variance of Y ? 

Var(Y ) = 42Var(X) = 16 E[X2] − E[X]2 

We can now calculate 
1 6 

E[X] = (−2 + 0 + 1 + 3 + 4) = 
5 5 
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and 
1 30 

E[X2] = ((−2)2 + 02 + 12 + 32 + 42) = = 6 
5 5 

Therefore, 
� �2

6 150 − 36 1824 
Var(Y ) = 16 6 − = 16 = ≈ 73 

5 25 25 

Example 4 Suppose Y ∼ B(n, p). Since Y can be written as the sum of outcomes from n independent 
trials, 

1 with probability p
Y = X1 + . . . + Xn, where Xi = 

0 with probability 1 − p 

we can calculate 
Var(Y ) = Var(X1) + . . . + Var(Xn) 

So what is the variance of Xi? Clearly, 
E[Xi] = p 

also, 
E[Xi 

2] = 1 · p + 0 · (1 − p) = p 

Therefore, by property 3 
Var(Xi) = E[Xi 

2] − E[Xi]
2 = p − p 2 = p(1 − p) 

Therefore 
n 

Var(Y ) = Var(Xi) = np(1 − p) 
i=1 

Since the variance is an expectation, we can directly apply results on expectations of functions of 
random variables directly to the variance of a function of random variables: if Y = r(X), 

� 

∞ 
�
� 

∞ 
�2 

Var(Y ) = E[Y 2] − E[Y ]2 = E[r(X)2] − E[r(X)]2 = r(t)2fX (t)dt − r(t)dt 
−∞ −∞ 

2.1 Higher-Order Moments 

We saw that the expected value is a measure of the location of a distribution, whereas the variance 
measures its dispersion. We may look at other moments of the random variable in order to characterize 
its distribution, e.g. whether it’s symmetric, has fat tails etc. 

Definition 3 The r-th moment of X is given by 

µr 
� = E[Xr] 

and the r-th central moment is defined as 

µr = E[(X − E[X])r] 

4 



The expectation is therefore also referred to as the first moment of the distribution of X, and the variance 
as its second central moment. 
Other frequently used characteristics of a distribution are 

µ3 = E[(X − E[X])3] 

which is called the skewness of the distribution of X, and 

µ4 = E[(X − E[X])4] 

the kurtosis of X. A high kurtosis corresponds to the distribution having a lot of probability mass in the 
tails. 

5 


