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Covariance 

The covariance of X and Y is a measure of the strength of the relationship between the two random 
variables. 

Definition 1 For two random variables X and Y , the covariance is defined as 

Cov(X, Y ) = E [(X − E[X])(Y − E[Y ])] 

First, by just applying the definitions, we get 

Property 1 

Cov(X, X) = Var(X) 

Property 2 

Cov(X, Y ) = Cov(Y, X) 

Furthermore, we have the following result which is very useful to calculate covariances: 

Property 3 

Cov(X, Y ) = E[XY ] − E[X]E[Y ] 

This is a generalization of the analogous property of variances, and the proof uses exactly the same kind 
of argument. Let’s do an example to see how this result is useful: 

Example 1 Suppose X and Y have joint p.d.f. 

8xy if 0 ≤ x ≤ y ≤ 1 
fXY (x, y) = 

0 otherwise 

What is the covariance Cov(X, Y )? - Let’s calculate the components which enter according to the right-
hand side of the equation in property 7: 

� ∞ ∞ 1 1 

E[XY ] = xyfXY (x, y)dxdy = 8x 2 y 2dydx 
−∞ −∞ 0 x 

� 

1 1 1 8 
= 8x 2 y 2dy dx = x 2(1 − x 3)dx 

0 x 0 3 
� 

� �1
8 1 8 x3 x6 

= (x 2 − x 5)dx = − 
3 0 3 3 6 

0 

8 1 1 4 
= − = 

3 3 6 9 
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Also, by the same steps as above, 

� 

1 � 

1 � 

1 8 
E[Y ] = 8x y 2dy dx = x(1 − x 3)dx 

30 x 0 
� 

� �1 
8 1 8 x2 x5 8 3 4 

= (x − x 4)dx = − = · = 
3 0 3 2 5 

0 3 10 5 

and 

� 

1 1 1 8 
E[X] = 8x 2 ydy dx = x 2(1 − x 2)dx 

0 x 0 2 
� 

1 1 1 8 
= 4 (x 2 − x 4)dx = 4 − = 

3 5 15 0 

Putting all pieces together, and applying property 7, 

4 8 4 4 · 25 − 32 · 3 4 
Cov(X, Y ) = E[XY ] − E[X]E[Y ] = − · = = 

9 15 5 225 225 

We already showed that for two independent random variables X and Y , the variance of the sum equals 
the sum of variances. Here’s a generalization to random variables which are not necessariy independent: 

Property 4 

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) 

The idea behind the proof is to apply properties 3 and 7 to get 

Var(X + Y ) = E[(X + Y )2] − E[X + Y ]2 

= E[X2 + 2XY + Y 2] − E[X]2 − 2E[X]E[Y ] − E[Y ]2 

= E[X2] − E[X]2 + E[Y 2] − E[Y ]2 + 2 (E[XY ] − E[X]E[Y ]) 

= Var(X) + Var(Y ) + 2Cov(X, Y ) 

Property 5 For random variables X, Y, Z, 

Cov(X, aY + bZ + c) = aCov(X, Y ) + bCov(X, Z) 

Property 6 

Cov(aX + b, cY + d) = acCov(X, Y ) 

Since by the last property, the covariance changes with the scale of X and Y , we would like to have a 
standardized measure which gives us the strength of the relationship between X and Y , and which is 
not affected by changing, say, the units of measurement of the two variables. The most frequently used 
measure of that kind is the correlation coefficient: 

Definition 2 The correlation coefficient of X and Y is given by 

Cov(X, Y )
ρ(XY ) = � 

Var(X)Var(Y ) 

The correlation coefficient is normalized in a way such that 
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Property 7 

−1 ≤ ρ(X, Y ) ≤ 1 

Broadly speaking, we distinguish three cases 

• �(X, Y ) > 0: ”X and Y are positively correlated” 

• �(X, Y ) = 0: ”X and Y are uncorrelated” 

• �(X, Y ) < 0: ”X and Y are negatively correlated” 

Property 8 

|ρ(X, Y )| = 1 ⇔ Y = aX + b 

for some constants a �= 0 and b. 

I.e. the absolute value of the correlation coefficient equals 1 if there is a deterministic linear relationship 
between the two random variables. In that case we say that X and Y are perfectly correlated. 

Remark 1 A very important principle of data analysis is that the statistical relationship between two 
random variables does not necessarily correspond to mechanical or causal statements which we would 
actually want to make based on the data. E.g. we typically observe in data sets that the time people spend 
working out in the gym is positively correlated with health, but this does not necessarily mean that sports 
causes health to improve. But it could as well be that some people are so unhealthy that they wouldn’t 
even think about going to the gym. 
A more abstract way to see why correlation of X and Y and causation of Y by X are inherently differ­
ent concepts, notice that the covariance is symmetric in X and Y , so we can change their roles. For 
causality however, we think of a specific direction of the relationship, i.e. we could have X → Y or ”X 

causes/affects Y ” but simultaneously ”Y doesn’t cause/affect X”, so we can’t change the roles of X and 
Y . Therefore: 

Correlation does not equal causation! 

(Much) more about that in your Econometrics class. 

1.1 Preview: Regression 

Say, we are interested in the relationship between a worker’s income Y and her education as measured 
with years of schooling X (for simplicity let’s just assume that both are continuous random variables). 
Then we can always rewrite the relationship between X and Y as 

Y = α + βX + U 

where U is a random variable with E[U ] = 0 and Cov(X, U) = 0 (in the regression context it will be 
called the residual). 
One way of determining the value of the parameters (α, β) is to solve 

(α, β) = arg min E[(Y − Xβ − α)2] 
α,β 
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Taking first-order conditions with respect to β (notice that expectations are linear in their argument, so 
we can pass the derivative through the integral), we get 

d 
0 = 

dβ 
E[(Y − Xβ − α)2] 

� 

= 
d 

dβ 
(y − xβ − α)2fXY (x, y)dydx 

� 

= 
d 

dβ 

� 

(y − xβ − α)2
� 

fXY (x, y)dydx 

d 
= E [(Y − Xβ − α)2]

dβ

= E [2X(Y − Xβ − α)] 

Similarly, taking first-order conditions with respect to α, 

d d 
0 = E[(Y − Xβ − α)2] = E [(Y − Xβ − α)2] = E[2(Y − Xβ − α)] 

dα dα

Solving the last expression for α, 
α = E[Y ] − E[X]β 

Plugging this into the first-order condition for β, we get 

0 = E [X(Y − Xβ − (E[Y ] − E[X]β))] = E[XY ] − E[X2]β − E[X]E[Y ] + E[X]2β 

so that we can now solve for the parameter 

E[XY ] − E[X]E[Y ] Cov(X, Y )
β = = 

E[X2] − E[X]2 Var(X) 

We can now verify that indeed E[U ] = E[Y − Xβ − α] = 0 and Cov(X, U) = Cov(X, Y − Xβ − α) = 0 
(in fact the first follows directly from the first-order condition for α, and the second from the first-order 
condition for β). 
Then the ”regression fit” α + βX is the part of Y which is correlated with (or ”explained” by) X, and 
U is the part of Y which is uncorrelated with X. The parameters α and β are usually called regression 
parameters or least-squares coefficients. Linear regression is the ”workhorse” of much of econometrics, 
and you’ll see this in many variations over the course of 14.32 and other econometrics classes. 

2 Conditional Expectations 

Example 2 Each year, a firm’s R&D department produces X innovations according to some random 
process, where E[X] = 2 and Var(X) = 2. Each invention is a commercial success with probability 
p = 0.2 (assume independence). The number of commercial successes in a given year are denoted by S. 
Since we know that the mean of S ∼ B(x, p) = xp, conditional on X = x innovations in a given year, xp 

of them should be successful on average. 

The conditional expectation of X given Y is the expectation of X taken over the conditional p.d.f.: 

Definition 3 

yfY |X(y|X) if Y is discrete 
E[Y |X] = � ∞

y 

−∞ 
yfY |X(y|X)dy if Y is continuous 
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Note that since fY |X(y|X) carries the random variable X as its argument, the conditional expectation is 
also a random variable. However, we can also define the conditional expectation of Y given a particular 
value of X, 

yfY |X(y|x) if Y is discrete 
E[Y |X = x] = � ∞

y 

−∞ 
yfY |X(y|x)dy if Y is continuous 

which is just a number for any given value of x as long as the conditional density is defined. 
Since the calculation goes exactly like before, only that we now integrate over the conditional distribution, 
won’t do a numerical example (for the problem set, just apply definition). Instead let’s discuss more 
qualitative examples to illustrate the difference between conditional and unconditional examples: 

Example 3 (The Market for ”Lemons”) The following is a simplified version of a famous model for 
the market for used cars by the economist George Akerlof. Suppose that there are three types X of used 
cars: cars in an excellent state (”melons”), average-quality cars (”average” not in a strict, statistical, 
sense), and cars in a poor condition (”lemons”). Each type of car is equally frequent, i.e. 

1 
P (”lemon”) = P (”average”) = P (”melon”) = 

3 

The seller and a buyer have the following (dollar) valuations YS and YB, respectively, for each type of cars: 

Type Seller Buyer 
”Lemon” 5,000$ 6,000$ 
”Average” 6,000$ 10,000$ 
”Melon” 10,000$ 11,000$ 

The first thing to notice is that for every type of car, the buyer’s valuation is higher than the seller’s, so 
for each type of car, trade should take place at a price between the buyer’s and the seller’s valuations. 
However, for used cars, quality is typically not evident at first sight, so if neither the seller nor the buyer 
know the type X of a car in question, their expected valuations are, by the law of iterated expectations 

E[YS ] =	 E[YS |”lemon”]P (”lemon”) + E[YS |”average”]P (”average”) + E[YS |”melon”]P (”melon”) 

1 
= (5, 000 + 6, 000 + 10, 000) = 7, 000 

3
E[YS ] = E[YB |”lemon”]P (”lemon”) + E[YB |”average”]P (”average”) + E[YB |”melon”]P (”melon”) 

1 
= (6, 000 + 10, 000 + 11, 000) = 9, 000 

3

so trade should still take place.

But in a more realistic setting, the seller of the used car knows more about its quality than the buyer

(e.g. history of repairs, accidents etc.) and states a price at which he is willing to sell the car. If the

seller can perfectly distinguish the three types of cars, whereas the buyer can’t, the buyer should form

expectations conditional on the seller willing to sell at the quoted price.

If the seller states a price less than 6, 000 dollars, the buyer knows for sure that the car is a ”lemon”

because otherwise the seller would demand at least 6, 000, i.e.


E[YB |YS < 6000] = E[YB |”lemon”] = 6000 

and trade would take place. However, if the car was in fact a ”melon”, the seller would demand at least 
10, 000 dollars, whereas the buyer would pay at most 

E[YB|YS ≤ 10, 000] = E[YB] = 9, 000 < 10, 000 
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so that the seller won’t be able to sell the high-quality car at a reasonable price.

The reason why the market for ”melons” breaks down is that in this model, the seller can’t credibly

assure the buyer that the car in question is not of lower quality, so that the buyer factors the possibility

of getting the bad deal into his calculation.


An important relationship between conditional and unconditional expectation is the Law of Iterated 
Expectations (a close ”cousin” of the Law of Total Probability which we saw earlier in the lecture): 

Proposition 1 (Law of Iterated Expectations) 

E [E[Y |X]] = E[Y ] 

Proof: Let g(x) = E[Y |X = x], which is a function of x. We can now calculate the expectation 

� ∞ � ∞ 

E[g(X)] = g(x)fX(x)dx = E[Y |X = x]fX(x)dx 
−∞ −∞ 

� ∞ ∞ fXY (x, y) 
= y dy fX(x)dx 

−∞ −∞ fX(x) 
� ∞ � ∞ 

= yfXY (x, y)dydx 
−∞ −∞ 

� ∞ � ∞ 

= y fXY (x, y)dx dy 
−∞ −∞ 

� ∞ 

= yfY (y)dy = E[Y ] 
−∞ 
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