
MIT OpenCourseWare
http://ocw.mit.edu 

14.30 Introduction to Statistical Methods in Economics 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� 

14.30 Introduction to Statistical Methods in Economics 
Lecture Notes 16 

Konrad Menzel


April 9, 2009


1 General Exam Policies 

•	 Exam 2 will be in class next Tuesday, April 14, starting at 9:00 sharp 

•	 relevant material: in first place topics we covered since last exam, but of course should feel com­
fortable with densities, probabilities and other concepts from the first third of the semester 

•	 more text problems than on problem sets, but less tedious calculations 

•	 will hand out normal probability tables with exam, so don’t have to bring your own 

•	 essentially same format as in first exam 

•	 bring calculators 

•	 closed books, closed notes


have about 85 minutes to do exam
• 

•	 I’ll give partial credit, so try to get started with all problems 

2 Review 

2.1 Functions of Random Variables 

General set-up: 

•	 know p.d.f. of X, fX(x) (discrete or continuous) 

•	 Y is a known function of X, Y = u(X) 

•	 interested in finding p.d.f. fY (y) 

The way how we obtain the p.d.f. fY (y) depends on whether X is continuous or discrete, and whether 
the function u( ) is one-to-one. Three methods ·

1.	 if X discrete: 
fY (y) = fX(x) 

{x:u(x)=y} 
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2. 2-step method if X continuous: Step 1: obtain c.d.f. FY (y) 

FY (y) = P (u(X) ≤ y) = fX(x)dx 
{x:u(x)≤y} 

Step 2: differentiate c.d.f. in order to obtain p.d.f.: 

d 
fY (y) = FY (y)

dy 

3. change of variables formula if (a) X continuous, and (b) u( ) is one-to-one: ·
� d � 

fY (y) = fX(s(y)) s(y) 
� dy � 

A few important examples which we discussed were: 

•	 Convolution Formula: if X and Y are independent, then Z = X + Y has p.d.f. 

∞ 
fZ(z) = fY (z − w)fX(w)dw 

−∞ 

Note: if densities of X and/or Y are zero somewhere, be careful with integration limits! 

•	 Integral Transformation: if X continuous, then the random variable Y = FX(X), where FX(·) is 
the c.d.f. of X is uniformly distributed. 

•	 Order Statistics: if X1, . . . , Xn i.i.d., then kth lowest value Yk has p.d.f. 

fYk
(y) = k 

n
FX(y)k−1 (1 − FX(y))

n−k 
fX(y)

k 

2.2 Expectations 

2.2.1 Expectation 

Definition of expectation of X 

•	 if X discrete, 

E[X] = xfX(x) 
x 

•	 if X continuous, 
∞ 

E[X] = xfX(x)dx 
−∞ 

Important properties of expectations 

1. for constant a,

E[a] = a


2. for linear function of X, Y = aX + b,


E[Y ] = aE[X] + b
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3. for 2 or more random variables, 

E[a1X1 + . . . + anXn + b] = a1E[X1] + . . . + anE[Xn] + b 

4. if X and Y are independent, then

E[XY ] = E[X]E[Y ]


• expectation is measure of location of distribution of X. 

• expectation of function Y = u(X) (discrete case: replace integral with sum) 

∞ 
E[Y ] = u(x)fX(x)dx 

−∞ 

•	 Jensen’s Inequality: if u(·) is convex, then


E[u(X)] ≥ u(E[X])


2.2.2 Variance 

Defined as 
Var(X) = E 

� 

(X − E[X])2
� 

Measure of dispersion of X. 

Important properties of variances 

1. for a constant a,

Var(a) = 0


2. can write variance as

Var(X) = E[X2] − E[X]2


3. for a linear function of independent random variables X1, . . . , Xn, 

Var(a1X1 + . . . + anXn + b) = a1
2Var(X1) + . . . + an

2 Var(Xn) + b 

4. more generally for any random variables X1, X2, 

Var(a1X1 + a2X2) = a 21Var(X1) + 2a1a2Cov(X1, X2) + a 22Var(X2) 

2.2.3 Covariance and Correlation 

Covariance defined as 
Cov(X, Y ) = E[(Y − E[Y ])(X − E[X])] 

Properties of covariances 

Cov(X, X) = Var(X) 

Cov(X, Y ) = Cov(Y, X) 

Cov(X, Y ) = E[XY ] − E[X]E[Y ] 

Cov(aX + b, cY + d) = acCov(X, Y ) 
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If X and Y are independent, Cov(X, Y ) = 0. 
Correlation coefficient defined as 

Cov(X, Y )
�(X, Y ) = � 

Var(X)Var(Y ) 

�(X < Y ) ∈ [−1, 1], and |�(X, Y )| = 1 if and only if Y is a deterministic linear function of X. 

2.2.4 Conditional Expectation 

Conditional expectation random variable defined by 
∞ 

E[Y X] = yfY |X(y X)dy |
−∞ 

|

Two important results on conditional expectations: 

•	 Law of Iterated Expectations

E[E[Y X]] = E[Y ]
|

Conditional Variance • 
Var(Y ) = Var(E[Y X]) + E[Var(Y X)] | |

2.3 Special Distributions 

2.3.1 Summary 

Looked following distributions 

• Uniform: X ∼ U [a, b] if p.d.f. of X is 

fX(x) =	 b−
1 

a if a ≤ x ≤ b 

0 otherwise 

• Binomial: X ∼ B(n, p) if p.d.f. of X is 
⎧ 

fX(x) = 
⎨ 

n

x 
px(1 − p)n−x if x ∈ {0, 1, . . . , n} 

⎩ 

0	 otherwise 

• Exponential: X ∼ E(λ) if X has p.d.f. 

λe−λx if x ≥ 0 
fX(x) = 

0 otherwise 

Normal: X ∼ N(µ, σ2) if p.d.f. is • 
1 (x−µ)2 

fX(x) = e− 2σ2√
2πσ 

• Poisson:	 X ∼ P (λ) if p.d.f. is 
� 

−λ 

fX(x) =	
λx 

x
e 
! if x ∈ {0, 1, 2, . . .}

0 otherwise 

Should know or be able to calculate mean and variance for each distribution. Also showed relationships 
between Binomial and Poisson, and Binomial and Normal. 
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2.3.2 Normal Distribution 

Should know how to standardize random variables: 

X − E[X]
Z = � 

Var(X) 

I will give you a copy of the tabulated c.d.f. of the standard normal, so should know how to read the 
tables. 

Important results on normal distribution: 

1. normal p.d.f. is symmetric about the mean 

2. linear functions of normal random variables are again normally distributed: if X ∼ N(µ, σ2), then 
Y = aX + b ∼ N(aµ + b, a2σ2). 

3. sums of independent normal random variables are normally distributed 

4. Central Limit Theorem: standardized sample mean for i.i.d. sample X1, . . . , Xn approximately 
follows a standard normal distribution for large n. 

2.4 Asymptotic Theory 

2.4.1 General Idea 

• always assume i.i.d. sample X1, . . . , Xn


• only deal with sample mean

n 

1
X̄n = Xi 

n 
i=1 

•	 exact value/distribution often hard or even impossible to derive given our knowledge about distri­
bution of Xi 

•	 thought experiment ”n → ∞” supposed to give approximations for large n 

2.4.2 Law of Large Numbers 

•	 Chebyshev’s Inequality: for any ε > 0,


Var(X)

P (|X − E[X]| > ε) ≤ 

ε2 

•	 Law of Large Numbers: if Xi, . . . , Xn i.i.d., then for all ε > 0


¯
lim P (|Xn − E[X]| > ε) = 0 
n→∞ 

•	 independence assumption important (e.g. correlated event in ”wisdom of crowds” example. 

•	 need Var(Xi) < ∞, so LLN doesn’t work with very fat tailed distributions. 
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2.4.3 Central Limit Theorem 

• look at distribution of standardized sample mean 

• Central Limit Theorem: for an i.i.d. sample with Var(Xi) < ∞, 

lim P 
√

n
Xn 

σ 

− µ ≤ x = Φ(x) 
n→∞ 

where Φ( ) is the normal c.d.f. ·

• saw graphs illustrating the DeMoivre-Laplace theorem for binomial random variables. 

Sample Problems 

Example 1 Spring 2003 Exam, Problem 3 
Mr Bayson, a third grade teacher in the Baldwin School in Cambridge is up for promotion, and the 
likelihood of it happening will depend in part on his students’ performance on the MCAS exam. He has 
ten students and the exam will have ten questions on it. Suppose that each student has a 60% chance 
of correctly answering each questions, and that answers on all questions are independent. What is the 
probability that his top scoring student scores at least nine out of ten? What is the probability that his 
bottom-scoring student scores at least three out of ten? 

Answer:

You should notice that this question has two parts: (1) determining the distribution of individual test

scores, and (2) finding the c.d.f.s of the maximum and the minimum.

Since each student’s exam score X is the number of successes out of 10 independent trials, it is a binomial

random variable, X ∼ B(10, 0.6), for which we know the p.d.f.


⎧ 

⎨ 
10 

0.6x0.410−x if x ∈ {0, 1, . . . , 10}
fX(x) = x 

⎩ 

0 otherwise 

In general, the maximum Y1 of an i.i.d. sample X1, . . . , Xn where the c.d.f. of Xi is FX(x) has c.d.f. 

FY1 (y) = FX(y)n 

and the minimum Y2 has c.d.f. 
FY2 (y) = 1 − (1 − FX(y))n 

The probability that a given student scores less than 9 is 

FX(9) = 1 − P (X = 9) − P (X = 10) = 1 − 10 
0.690.4 + 

10 
0.610 

9 10 

2 39 310 23 
= 1 − 10 · 

5

· 
10 

+
510 

= 1 − 
5 

· 0.69 

Therefore, the probability that the top student scores at least 9 out of 10 is 

� �10 

1 − FY1 (9) = 1 − [FX(9)]10 = 1 − 1 − 23 
0.69 ≈ 37.79% 
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The probability that a given student scores at least 3 out of 10 is 

1−FX(2) = 1−P (X = 0)−P (X = 1)−P (X = 2) = 1−0.410−10 0.6 0.49 −45 0.62 0.48 = 1− 1876 
0.48 · · · ·

Therefore, the probability that the bottom student scores at least 3 out of ten is 

1 − FY (2) = [1 − FX(2)]10 ≈ 60.39% 

Example 2 Spring 2007 Exam, Problem 3 
If X ∼ N(µ, σ2), we say that Y = eX has a lognormal distribution, Y ∼ L(µ, σ2). 

(a) Find the p.d.f. of Y 

(b) Suppose you have $100,000 to invest and you have access to an investment whose return R1 is 

distributed L(µ, σ2). Its mean eµ+σ2/2 is 1.10, and its variance e2(µ+σ2) e2µ+σ2 
is 0.01. What −

is the probability that your wealth at the end of one period of investment ($100, 000R1) is greater 
than 110, 000? 

(c) With the same parameter values as in (b), what is the probability that your wealth at the end of two 
independent periods of investment is greater than $115,000? 

Answer: 

(a) This transformation is one-to-one, so we can use the change of variables formula. Note that X can be 
any real number, so the support of Y is (0,∞). The inverse transformation is X = ln(Y ), which has 
dX 1 . Thus, using the change of variables formula, we have fY (y) = 1 1 exp(−1 ( ln(y)−µ )2)dY = X y 

√
2πσ 2 σ 

for y > 0 and fY (y) = 0 otherwise. 

(b) It is useful to begin by solving for µ and σ2 . We can factor the expression for the variance as 

e2µ+σ2 
(eσ2 −1), or [eµ+ 2

1 σ2 σ2 
]2(e −1). Plugging in from the expression for the mean and using the 

fact that the variance is .01, we have (1.10)2(eσ2 − 1) = .01. Solving for σ yields σ ≈ .090722098. 
We can then go back and see that µ ≈ .09119493. 

Now let’s find out the probability that your wealth at the end of one period is greater than 

$110,000. We have P (100000R1 > 110000) = P (R1 > 1.1) = P (ln(R1) > ln(1.1)) = P ( ln(R
σ 
1)−µ 

> 
ln(1.

σ 
1)−µ ) = 1 − Φ( ln(1.

σ 
1)−µ ) ≈ 1 − Φ(.045361051) ≈ 1 − .5181 = .4819, where you can use the 

normal probability tables to get the value of the standard normal c.d.f. 

(c) P (100000R1R2 > 115000) = P (R1R2 > 1.15) = P (ln(R1) + ln(R2) > ln(1.15)). Note that 
ln(R1) and ln(R2) are independent normals, and so their sum is also normal. The mean is the 
sum of the means and the variance is the sum of the variances. Using tildes to refer to the new 
mean, variance, and standard deviation here, we thus have ˜ .18238986, σ̃2 .016460998, and µ ≈ ≈
σ̃ ≈ .128300421. So continuing along with the earlier calculation, we have P (ln(R1) + ln(R2) > 

ln(1.15)) = P ( ln(R1)+ln(R2)−µ̃
> 

ln(1.15)−µ̃ ) = 1 − Φ( ln(1.15)−µ̃ ) ≈ 1 − Φ(−.3322508) ≈ 1 − .3698 = σ̃ σ̃ σ̃
.6302. 

Example 3 Spring 2007 Exam, Problem 4 
Mikael Priks, a Swedish economist, has been studying various economic issues surrounding soccer hooli­
ganism using detailed data on hooligan activity, fights, injuries, etc., collected by the Swedish police and 
self-reported by one of the gangs, the ”Firman Boys” (see www.lrz-muenchen.de/ces/mikael.htm). In one 
paper he sought to analyze the determinants of the likelihood and severity of fights between rival hooligan 
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groups. To do so, he constructed a model of fights and injuries where the number of chance meetings 
between two rival groups in a season follows a P (5) (Poisson with λ = 5) distribution. Furthermore, he 
assumed that at least one injury occurs in every fight and that, in fact, any number of injuries up to ten 
are all equally likely. 

(a) Given those assumptions, what is the expected number of injuries that two rival groups inflict on 
each other in a given year? What is the variance of that quantity? 

(b) Suppose instead that a fight only happened with probability one-half when a chance meeting of two 
rival groups occurred (you may assume independence of chance meetings). How would your answers 
to part (a) change? 

Answer: 

(a) Let us use X to refer to the number of fights in a season and Y to refer to the number of in­
juries. Here we’ll assume that a chance meeting necessarily results in a fight. We have E(Y ) = 
E(E(Y X)) = E(5.5X) = 5.5E(X) = 5.5(5) = 27.5. And we have V ar(Y ) = E(V ar(Y X)) +|

E( 102 
|

V ar(E(Y |X)) = −1 X) + V ar(5.5X). [Note that the variance of the number of injuries in a 12 

fight is 102 −1 , and thus the variance of the number of injuries in X fights is 102 −1 X if the distribu­12 12 

tion of injuries is independent across fights.] Continuing along, we have E( 102 −1 X)+V ar(5.5X) = 12 
99 121 99 121 E(X) + V ar(X) = (5) + (5) = 192.5.12 4 12 4 

(b) Let us use Z to refer to the number of chance encounters. We have E(Y ) = E(E(E(Y X) Z)) =| |
E(E(5.5X Z)) = E(5.5(E(X Z))) = E(5.52

1 Z) = 2.75E(Z) = 2.75(5) = 13.75. For the variance, | |
99 E(X) + 121 V ar(X), but now we can still say that V ar(Y ) = E(V ar(Y |X)) + V ar(E(Y |X)) = 12 4 

E(X) and V ar(X) will have changed from part a. It is not hard to see that E(X) is half of 
its previous value (so that now it is 2.5), and we can use the fact that X Z is a binomial with |
p = .5 and Z trials to write the variance of X as V ar(X) = E(V ar(X Z)) + V ar(E(X Z)) =| |
E(Z(.5)(1 − .5)) + V ar(.5Z) = .25E(Z) + .25V ar(Z) = .25(5) + .25(5) = 2.5. So going back, we 

99 121 99 121 have V ar(Y ) = 12 4 12 4E(X) + V ar(X) = (2.5) + (2.5) = 96.25. 
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Sample Problems 

Spring 2003 Exam, Problem 3 Mr Bayson, a third grade teacher in the Baldwin School in Cam­
bridge is up for promotion, and the likelihood of it happening will depend in part on his students’ 
performance on the MCAS exam. He has ten students and the exam will have ten questions on it. Sup­
pose that each student has a 60% chance of correctly answering each questions, and that answers on all 
questions are independent. What is the probability that his top scoring student scores at least nine out 
of ten? What is the probability that his bottom-scoring student scores at least three out of ten? 

Spring 2007 Exam, Problem 3 If X ∼ N(µ, σ2), we say that Y = eX has a lognormal distribution, 
Y ∼ L(µ, σ2). 

(a) Find the p.d.f. of Y 

(b) Suppose you have $100,000 to invest and you have access to an investment whose return R1 is 

distributed L(µ, σ2). Its mean eµ+σ2 /2 is 1.10, and its variance e2(µ+σ2) − e2µ+σ2 
is 0.01. What 

is the probability that your wealth at the end of one period of investment ($100, 000R1) is greater 
than 110, 000? 

(c) With the same parameter values as in (b), what is the probability that your wealth at the end of 
two independent periods of investment is greater than $115,000? 

Spring 2007 Exam, Problem 4 Mikael Priks, a Swedish economist, has been studying various eco­
nomic issues surrounding soccer hooliganism using detailed data on hooligan activity, fights, injuries, etc., 
collected by the Swedish police and self-reported by one of the gangs, the ”Firman Boys” (see www.lrz­
muenchen.de/ces/mikael.htm). In one paper he sought to analyze the determinants of the likelihood and 
severity of fights between rival hooligan groups. To do so, he constructed a model of fights and injuries 
where the number of chance meetings between two rival groups in a season follows a P (5) (Poisson with 
λ = 5) distribution. Furthermore, he assumed that at least one injury occurs in every fight and that, in 
fact, any number of injuries up to ten are all equally likely. 

(a) Given those assumptions, what is the expected number of injuries that two rival groups inflict on 
each other in a given year? What is the variance of that quantity? 

(b) Suppose instead that a fight only happened with probability one-half when a chance meeting of 
two rival groups occurred (you may assume independence of chance meetings). How would your 
answers to part (a) change? 
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