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Lecture Notes 17 
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The Central Limit Theorem 

Remember that last week, we saw the DeMoivre-Laplace theorem for Binomial random variables, which 
essentially said that for large values of n, the standardization of the random variable Y ∼ B(n, p), 

Z = Y −E[Y ] follows approximately a standard normal distribution. Since a binomial is a sum of i.i.d. √
nVar(Y ) 

zero/one random variables Xi (counting the number of ”trials” resulting in a ”success”), we can think of 
Y as the sample mean of X1, . . . , Xn. 
n 

Therefore the DeMoivre-Laplace theorem is in fact also a result on the standardized mean of i.i.d. zero/one 
random variables. The Central Limit Theorem generalizes this to sample means of i.i.d. sequences from 
any other distribution with finite variance. 

Theorem 1 (Central Limit Theorem) Suppose X1, . . . , Xn is a random sample of size n from a given 
distribution with mean µ and variance σ2 < ∞. Then for any fixed number x, 

lim P 
√

n
Xn 

σ 

− µ ≤ x = Φ(x) 
n→∞ 

¯We say that 
√

nXn converges in distribution (some people also say ”converges in law”) to a normal with 
mean µ and variance σ2, or in symbols: 

¯ d√
n(Xn − µ) → N(0, σ2) 

So how does the mean converge both to a constant µ (according to the Law of Large Numbers), and 
a random variable with variance one (according to the central limit theorem) at the same time? The 
crucial detail here is that for the central limit theorem, we blow the sample mean up by a factor of 

√
n 

which turns out to be exactly the right rate to keep the distribution from collapsing to a point (which 
happens for the Law of Large Numbers) or exploding to infinity. 

Why is the standard normal distribution a plausible candidate for a limiting distribution of a sample 
mean to start with? Remember that we argued that the sum of two independent normal random variables 
again follows a normal distribution (though with a different variance, but since we only look at the 
standardized mean, this doesn’t matter), i.e. the normal family of distributions is stable with respect to 
convolution (i.e. addition of independent random variables from the family). Note that this is not true 
for most other distributions (e.g. the uniform or the exponential). 
Since the sample mean is a weighted sum of the individual observations, increasing the sample from n to 
2n, say, amounts to adding the mean of the sequence Xn+1, . . . , X2n to the first mean, and then dividing 

¯by 2. Therefore, if we postulated that even for large n, the distribution of Xn was not such that the sum 
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¯ ¯Figure 1: Number of heads in n coin tosses: sample mean Xn (left) and standardized sample mean 
√

nXn 

(right) 

of two independent draws was in the same family of distributions, the distribution of the sample mean 
would still change a lot for arbitrarily large values of n, and can therefore not lead to a stable limit. This 
should motivate why it is plausible that the distribution of the mean approaches the normal distribution 
in the limit. 

Example 1 Suppose X1, . . . , Xn are i.i.d. random variables where Xi ∼ U [0, 1] is uniform, so the p.d.f. 
is 

� 

fX(x) =
1 if 0 ≤ x ≤ 1 
0 otherwise 

We can now use the convolution formula from lecture 10 to compute the p.d.f. for the partial sums 

Sk = X1 + X2 + . . . + Sk 

For k = 2, we get (need to be careful about integration limits) 

∞ min{s2,1}

fS2 (s2) = fX(s2 − w)fX(w)dw = 1dw


max{s2−1,0}
−∞ 
⎧ 

⎨ 
s2 if 0 ≤ s2 ≤ 1 

= min{s2, 1} − max{s2 − 1, 0} = 2 − s2 if 1 ≤ s2 ≤ 2 
⎩ 

0 otherwise 

Now, the next calculations become more tedious because we always have to keep track of the integration 
limits and the kink points in the density. After some calculations, I get for k = 3 

⎧ 2 

⎪ if 0 ≤
�

⎪ 

s 

2 
3 s3 ≤ 1 

⎨ 3 
fS3 (s3) = 

∞ 
fS2 (s3 − w)fX(w)dw = −2 + 3s3 − s3

2 if 1 ≤ s3 ≤ 2 
⎪ 

⎪ 

9
2 − 3s3 + 12 s

2
3 if 2 ≤ s3 ≤ 3−∞ 

⎩ 

0 otherwise 

By the rule on expectations of sums of random variables, 

k 
E[Sk] = kE[X1] = 

2 
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Also, since X1, X2, . . . , Xk are independent, we can use the rule on the variance of the sum 

Var(Sk) = Var(X1 + X2 + . . . + Xk) = Var(X1) + Var(X2) + . . . + Var(Xk) 
� 1 � �2 � � 

1 1 1 1 k 
= kVar(X1) = k t −

2 
dt = k 

3 
−

2
+

4 
=

12 0 

Therefore, the standardization Zk of SK is given by 

Sk − k 
2Zk = � 

k 
12 

We can therefore calculate the densities of the standardizations Z1, Z2, Z3 using the change of variables 

formula (notice that the derivative is just equal to 12 )
k 

1

fZ1 (z) =	
√

12 
if −

√
3 ≤ z ≤

√
3 

0 otherwise 
⎧ 

⎪ 

⎨ 

√1
6 

+ 6 
z if −

√
6 ≤ z ≤ 0 

fZ2 (z) = 1 z if 0 ≤
⎪ 

√
6 
− 6 z ≤

√
6 

⎩ 0 otherwise 
⎧

� �2 
⎪ 

+ 
⎪ 

1 3 z if − 3 ≤ z ≤ −1 
⎪ 4 2 2 

fZ3 (z) = 
⎨ 3

8 
�

− z 
8 

2

2 
� 

if − 1 ≤ z ≤ 1 

⎪ 

⎪ 

2
1 9 

4
3 z + z 

8 if 1 ≤ z ≤ 3 
⎪ 8 −
⎩ 

0	 otherwise 

Now let’s check how this looks graphically: 

Central Limit Theorem for uniform r.v.s 
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The p.d.f. for standardized sums of uniform random variables looks very similar to the standard 
normal p.d.f. for a sum over as few as 3 independent draws - which is quite surprising since the uniform 
density itself doesn’t look at all like that of a normal random variable. 
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While the last example is a little deceptive in that the normal approximation looks quite good for n 

as small as 3 (at least optically), with n → ∞, we usually mean n ≈ 40 or larger for the approximation 
to be reasonably accurate. 

Summarizing, the Central Limit Theorem is particularly useful when we don’t want to compute the 
true p.d.f. of the sample mean. There are two situations in which this happens 

•	 We can’t compute the actual p.d.f. because we don’t know the exact distribution of the Xi’s 

•	 we don’t want to compute the actual p.d.f. because the computations are too tedious - which is 
almost invariably true for the general convolution formula (see last example), but also for many 
discrete examples (see Binomial example from last lecture). 

Estimation 

So far in this class, we started by assuming that we knew the parameters of the distribution of a random

variable - e.g. we knew that X ∼ P (λ) - and then calculated probabilities and other properties of random

samples from that distribution. Now we are going to look at the reverse problem:

Assume that we have an i.i.d. sample of observations from a distribution with unknown parameters θ,

how do we get a ”reasonable” answer which value of θ in the family of distributions we are looking at

may have generated the data.


Example 2 If for a given coin we don’t know the probability for heads in a single toss, we could toss 
� Heads it many times. Then we’d think that the fraction of heads, p̂ = may be a ”good guess” for the 
� Tosses 

probability P (Heads) in a sense to be defined later. 

A parameter is a constant indexing a family of distributions given by the p.d.f.s f(x θ), where we denote |
parameters generally as θ1, . . . , θk. 

Example 3 for the binomial distribution, • 
⎧ 

fX(x n, p) = 
⎨ 

n

x 
px(1 − p)n−x for x = 0, 1, . . . , n |

⎩ 

0	 otherwise 

the parameters are the number of trials n and the success rate p. 

•	 for the normal distribution, 
1 (x−µ)2 

fX(x µ, σ) = e−| √
2πσ 

2σ2


so that parameters are mean µ and standard deviation σ


•	 the Poisson distribution has one parameter λ 
� 

e −λλx 

for x = 0, 1, 2, . . . 
fX(x|λ) = 

0 
x! 

otherwise 

Much of statistics is concerned with determining which member of a known family of distributions gives 
the correct probability distribution of an observed process or phenomenon. In symbols, we want to find 
the parameter value θ0 such that X ∼ f(x|θ0). This is the problem of ”estimating the parameters which 
characterize the distribution.” 

We’ll always start off a random sample X1, . . . , Xn, and we’ll always assume that 

X ∼ f(x|θ0) for unknown θ0 ∈ Θ 
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Definition 1 An estimator θ̂ of θ is a statistic (i.e. a function of X1, . . . , Xn), 

θ̂ = θ̂(X1, . . . , Xn) 

A realization θ̂(x1, . . . , xn) of the estimator in a sample is called an estimate of θ. 
Notice that, as a function of the random sample, the estimator is a proper random variable, so we 

will in general be interested in describing its distribution in terms of the p.d.f., and moments of its 
distribution. 

Example 4 Suppose, X ∼ Bernoulli(θ0), i.e. X is a zero/one random variable which takes the value 1 
with probability θ and has p.d.f. 

⎧ 

⎨ 
θ0 if x = 1 

fX(x) = 1 − θ0 if x = 0 
⎩ 

0 otherwise 

How do we estimate θ0? 
Could use sample mean 

n
1 

θ̂(X1, . . . , Xn) = Xi 
n 

i=1 

e.g. from 5 Bernoulli trials 1, 0, 0, 1, 1 
3 

θ̂(1, 0, 0, 1, 1) = 
5 

Since the estimator θ̂ for a sample of 5 observations is a random variable, we can derive its p.d.f.: recall 
�5

that for S5 ≡ i=1 Xi , S5 ∼ B(5, θ0). Applying the methods for finding p.d.f.s of functions of discrete 

random variables to θ̂ = S5 , we get 5 
⎧ 

(t) = 
⎨ 

5
5 
t

θ0
5t(1 − θ0)

5(1−t) if t ∈ 
� 

0, 5
1

5
2 

5
3 

5
4 , 1 

� 

, , ,
fθ̂

⎩ 

0 otherwise 

In particular, the distribution of the estimator depends on the true probability θ0 - which can be anywhere 
in the interval [0,1] - but can only take 6 different discrete values. 

Example 5 If X ∼ U [0, θ] is uniform over an interval depending on the parameter, the p.d.f. is 

θ 
1 if 0 ≤ x ≤ θ 

fX(x) = 
0 otherwise 

How could we estimate θ? Could use e.g. 

θ̂1 = max{X1, . . . , Xn} 
θ̂2 = 2X̄n 

Say, we sampled three observations from the distribution, 0.2, 0.6, 0.4. Then θ̂1 = 0.6 and θ̂2 = 0.8, so 
the two estimators give different answers on the same parameter. How should we choose among those 
different estimators? - We’ll get back to this in a moment. 

How do you come up with these functions θ̂(X1, . . . , Xn)? • 

How can we determine whether these estimators are reasonable? • 

• How should we choose between two or more estimators for the same parameter? 
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3 General Properties of Estimators 

We will denote the expectation of X under the parameter θ - i.e. the expectation of X if the true 
parameter is equal to θ - by 

∞ 
Eθ[X] = xfX(x θ)dx |

−∞ 
Similarly, I’ll write the variance under the parameter θ as 

Varθ(X) = 

� ∞ 
(x − Eθ[X])2fX(x|θ)dx 

−∞ 

The bias of an estimator is the difference between its expectation and the true parameter, 

Bias(θ̂) = Eθ0 [θ̂] − θ0 

Of course, we’d like an estimator to get the parameter right on average, so that ideally, the bias should 
be zero. 

Definition 2 An estimator θ̂ = θ̂(X1, . . . , Xn) is unbiased for θ if 

Eθ0 [θ̂] = θ0 

for all values of θ0. 

Example 6 Suppose X1, . . . , Xn is an i.i.d. sample from a N(µ, σ2) distribution. We already saw last 
week that the expectation of the sample mean 

¯Eµ,σ2 [Xn] = Eµ,σ2 [X] = µ 

¯for any value of µ, so that Xn is an unbiased estimator for the mean µ of a normal distribution. 

Example 7 Suppose we want to estimate the variance parameter σ2 for X ∼ N(µ, σ2) with unknown 
mean µ from an i.i.d. random sample X1, . . . , Xn. Since σ2 = E[(X − E[X])2], an intuitively appealing 
estimator would be 

n 

σ̂2 =
1 

(Xi − X̄)2 

n 
i=1 

(where we substituted the sample mean for the actual expectation). What is the expectation of this esti­
mator if the true parameters of the distribution are (µ0, σ0

2)? 
Recall that E[X2] = E[X]2 + Var(X), so that 

n 

E[σ̂2] = E 
1

(Xi 
2 − 2XiX̄ + X̄2) 

n 
i=1 

n 
1 

E[X2 X̄2]= i − 
i=1 
n 

n 

1 
= E[Xi 

2] − E[X̄2] 
n 

i=1 
n � � 

σ2 

n n 
= 

1
(µ 2 + σ2) − µ 2 +

1 

i=1 

σ2 n − 1 
σ2 = µ 2 + σ2 − µ 2 − 

n 
= 

n 

6 



� 

�

� � 

Therefore σ̂2 is not an unbiased estimator for σ2, but we can easily construct an unbiased estimator σ̃2 

n 

σ̃2 = 
n −

1

1 
(Xi − X̄n)2 

i=1 

Where does this bias come from? Broadly speaking, the reason is that inside the square we are replacing 
¯µ with a (noisy) estimate µ̂ = Xn. You can check on your own that if µ0 was known, the estimator 

σ̂2 = 1 n (Xi − µ0)
2 would be unbiased for σ. 

n i=1

Having to estimate the mean uses up one ”degree of freedom” in the data - e.g. if we only had a sample 
of one observation, the estimated mean would be equal to that observation, and the ”naive” estimator of 
the variance would give us σ̂2 = 0, which is clearly not the right answer. 

Unbiasedness may not be the only thing we care about, since the estimator being equal to the true 
parameter on average doesn’t mean that in for a given sample, the estimate is actually going to be close 
to the true parameter. 

Definition 3 For a sample X1, . . . , Xn, we say that θ̂ is a consistent estimator for θ if as we increase 
n, the estimator converges in probability to θ0, i.e. for all ε > 0, 

lim Pθ0 |θ̂(X1, . . . , Xn) − θ0| < ε = 1 
n→∞ 

for all values of θ0. 

In words, in a sufficiently large sample, a consistent estimator will be within a small distance from the 
true parameter with high probability. Notice that unbiasedness and consistency are two very different 
concepts which overlap, but neither implies the other: 

Example 8 Back to one of our estimators for the uniform distribution, X ∼ U [0, θ0]. If we look at 

θ̂1 = max{X1, . . . , Xn} 

we can easily see that θ̂1 is not unbiased for θ, because due to the nature of the uniform distribution, all 
possible values of Xi are less than θ0. Therefore, no matter how large n is, P (max{X1, . . . , Xn} < θ0) = 1. 

Therefore the expectation Eθ0 [θ̂1] < θ0. However, θ̂1 is consistent for θ0: We can easily see that for a 
single observation X from the uniform, the c.d.f. is FX(x) = 

θ
x 

0 
. Since Yn := max{X1, . . . , Xn} is the 

nth order statistic of the sample, we get from our previous discussion that for 0 ≤ 1, FYn 
(y) = 

� �n 
y ≤

(FX(y))
n 

= 
θ
y 

0 
. Since θ̂1 < θ0 with probability 1, we can therefore calculate for any sample size n 

and any ε > 0 
� �n 

P ( ˆ > ε) = P (Yn < θ0 − ε) = 
θ0 − ε n|θ1 − θ0|

θ0 
≡ p 

θ0−εwhere p := 
θ0 

< 1 since ε > 0. Therefore, the probability of a deviation from θ0 by more than ε vanishes 

as we increase n, and θ̂1 is therefore consistent. 

Example 9 By the Law of Large Numbers, the sample mean converges in probability to E[X] = µ.

Therefore, for an i.i.d. sample X1, . . . , Xn of N(µ, σ2) random variables, the sample mean is a consistent

estimator for µ.

Alternatively, let’s look at an ”unreasonable” estimator θ̃(X1, . . . , Xn) = Xn. Then


E[θ̃(X1, . . . , Xn)] = E[Xn] = µ 

7 



so this estimator is unbiased. However, for any sample size n, the distribution of the estimator is the 
same as that for Xi ∼ N(µ, σ), so e.g. for ε = σ0, the probability 

P (|θ̃(X1, . . . , Xn) − µ0| < σ0) = P (
� 

µ0 − σ0 ≤ Xn ≤ µ0 + 
� 

σ0) 

= P −1 <
Xn − µ0 

< 1 = P (−1 < Z < 1) 
σ0 

= Φ(1) − Φ(−1) ≈ 0.6825 << 1 

for all n, where the standardization Z := Xn

σ
−
0 

µ0 follows a N(0, 1) distribution. By this argument, θ̃ is 
unbiased, but not consistent. 
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