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Maximum Likelihood Estimation: Further Examples 

Example 1 Suppose X ∼ N(µ0, σ0
2), and we want to estimate the parameters µ and σ2 from an i.i.d. 

sample X1, . . . , Xn. The likelihood function is 

n� 1 (Xi−µ)2 

L(θ) = e− 
2σ2√

2πσ 
i=1 

It turns out that it’s much easier to maximize the log-likelihood, 

n � 
(Xi−µ)2 

� 

logL(θ) = 
� 

log √
2

1 

πσ 
e− 

2σ2 

i=1 
n

= 
�� 

log 
1 (Xi − µ)2 � 

√
2πσ 

− 
2σ2 

i=1 
n

= − n 

2
log(2πσ2) − 1 �

(Xi − µ)2 

2σ2 
i=1 

In order to find the maximum, we take the derivatives with respect to µ and σ2, and set them equal to 
zero: 

n n
1 � 1 �

0 = 
2σ�2 

i=1 

2(Xi − µ̂) ⇔ µ̂ = 
n 

i=1 

Xi 

Similarly, 

n n n
n 2π 1 � 1 � 1 � 

¯0 = −
2 2πσ�2 

+
2
�
σ�2
�2 

i=1 

(Xi − µ̂)2 ⇔ σ�2 = 
n 

i=1 

(Xi − µ̂)2 = 
n 

i=1 

(Xi − Xn)2 

Recall that we already showed that this estimator is not unbiased for σ0
2, so in general, Maximum Likelihood 

Estimators need not be unbiased. 

Example 2 Going back to the example with the uniform distribution, suppose X ∼ U [0, θ], and we are 
interested in estimating θ. For the method of moments estimator, you can see that 

θ 
µ1(θ) = Eθ[X] = 

2 

1 



so equating this with the sample mean, we obtain 

θ̂MoM = 2X̄n 

What is the maximum likelihood estimator? Clearly, we wouldn’t pick any θ̂ ≤ max{X1, . . . , Xn} because 

a sample with realizations greater than θ̂ has zero probability under θ̂. Formally, the likelihood is 

� � 
1 
�n 

if 0 ≤ Xi ≤ θ for all i = 1, . . . , n 
L(θ) = θ 

0 otherwise 

We can see that any value of θ ≤ max{X1, . . . , Xn} can’t be a maximum because L(θ) is zero for all those 
points. Also, for θ ≥ max{X1, . . . , Xn} the likelihood function is strictly decreasing in θ, and therefore, 
it is maximized at 

θ̂MLE = max{X1, . . . , Xn} 
Note that since Xi < θ0 with probability 1, the Maximum Likelihood estimator is also going to be less 
than θ0 with probability one, so it’s not unbiased. More specifically, the p.d.f. of X(n) is given by 

� 
n 
� 

1 y 
�n−1 

fX(n) 
(y) = n[FX(y)]n−1fX(y) = θ0 θ0 θ0 

if 0 ≤ y ≤ θ0 

0 otherwise 

so that � ∞ � θ0 
� 

y 
�n 

n 
E[X(n)] = 

−∞ 

yfX(n) 
(y)dy = 

0 
n

θ0 n + 1 
dy = θ0 

We could easily construct an unbiased estimator θ̃ = n+1 X(n). n 

1.1 Properties of the MLE 

The following is just a summary of main theoretical results on MLE (won’t do proofs for now) 

•	 If there is an efficient estimator in the class of consistent estimators, MLE will produce it. 

•	 Under certain regularity conditions, MLE’s will have an asymptotically normal distribution (this 
comes essentially from an application of the Central Limit Theorem) 

Is Maximum Likelihood always the best thing to do? - not necessarily 

• may be biased


• often hard to compute


•	 might be sensitive to incorrect assumptions on underlying distribution 

2 Confidence Intervals 

In order to combine information about the value of the estimate and its precision (as e.g. given by its 
standard error), what is often done is to report an interval around the estimate which is likely going to 
contain the actual value. 
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Example 3 Suppose the captain of a Navy gunboat has to establish a beachhead on a stretch of shoreline, 
but first has to make sure that a battery on the beach - which can’t be seen directly from the sea - is 
destroyed, or at least severely damaged. 
The boat already took some fire from the coast, and based on the direction the projectiles came from, the 
captain has an estimate θ̂ of the position of the battery, which is normally distributed with variance σβ 

2 

around the true position θ0. 
The captain can fire a volley of missiles on a range of the beach, making sure that everything in that 
range gets destroyed. How can the captain determine what range of the shore to fire at so that he can be 
95% sure that the battery will be destroyed so that it will be safe to land troops? 

Shoreline 

Actual position of batteryEstimated position of battery 

CI 

"estimated f(θ)"  f(θ)

 (θ) + 1.96σ  (θ) + 1.96σ(θ) θ0 

For the normal distribution, we know that 95% of the probability mass     

Image by MIT OpenCourseWare.

is within 1.96 standard devia­
tions on either side of the mean. So if the captain orders to fire at the range CI = [θ̂ − 1.96σ, θ̂ + 1.96σ], 

the probability that θ̂ will be such that θ0 ∈ CI equals 95%. 

So while earlier on we were only looking for a single function θ̂(X1, . . . , Xn) which gives a value close to 
the actual parameter value θ0, we will now try to construct two functions A(X1, . . . , Xn) < B(X1, . . . , Xn) 
such that the two functions enclose the true parameter with probability greater or equal to some pre­
specified level. 

Definition 1 A 1−α confidence interval for the parameter θ0 is an interval [A(X1, . . . , Xn), B(X1, . . . , Xn)] 
depending on two data-dependent functions A( ) and B( ) such that · ·


Pθ0 (A(X1, . . . , Xn) ≤ θ0 ≤ B(X1, . . . , Xn)) = 1 − α


Typically, these functions are not unique, but by convention, we choose A and B such that α 
2 proba­

bility falls on each side of the interval. 
For a realization of the confidence interval, [A(x1, . . . , xn), B(x1, . . . , xn)], it doesn’t make sense to 

say that P (A(x1, . . . , xn) ≤ θ0 ≤ B(x1, . . . , xn)) = 1 − α, since now both the limits of the interval and 
the true parameter are just real numbers, so given a realization of the sample, the estimated interval 
either covers θ0 (with probability 1, if you will), or it doesn’t. We should be clear that it is the confidence 
interval (i.e. the functions A( ) and B( )) which are random given the true parameter, not θ0.· ·

The following is the most common case for which we’d like to construct a confidence interval. 
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Example 4 Suppose θ̂ ∼ N(θ0, σ
2), and we want to construct a 1 − α confidence interval. If z1−α/2 is 

the 1 − α α 
2 quantile of the standard normal distribution, i.e. Φ(z1−α/2) = 1 − 2 , then we can check that 

CI = [θ̂ − σz1−α/2, θ̂ + σz1−α/2] 

covers θ0 with probability 

� 
ˆ ˆ

� � 
θ0 − θ̂

� 

Pθ0 θ − σz1−α/2 ≤ θ0θ + σz1−α/2 = Pθ0 −z1−α/2 ≤ 
σ 

≤ z1−α/2 

= Φ(z1−α/2) − Φ(−z1−α/2) 
α α 

= =1 −
2 
−

2
1 − α 

since θ0

σ 
−θ̂ is the standardization of θ̂, and therefore follows a standard normal distribution.


So if we want a 95% confidence interval, z1−α/2 = z0.975 = 1.96, so the confidence interval is given by


θ̂ ± 1.96σ.

This is the most commonly used way of obtaining confidence intervals, so you should make sure that you

understand how this works.


Example 5 Poll results are often reported with a ”margin of error”. E.g. the Gallup report for April

18 1 says that 46% of voters would vote for Clinton over McCain, 44% would vote for McCain, and 10%

would choose neither or had no opinion. These results were based on 4,385 interviews, and the report

goes on to state that ”For results based on the total sample of national adults, one can say with 95%

confidence that the maximum margin of sampling error is 2 percentage points.”

What does this mean? - if the true vote share of a candidate is p, the variance of the average share in a


sample of n voters would be Var( X̄n) = p(1
n 
−p) , and you can verify that this variance is highest for p = 0.5.


¯
� 

0.5·0.5So for a sample of 4,385 interviewees, the maximal standard deviation is 
�

Var( Xn) ≤ 4385 ≈ 0.76%. 

By the Central Limit Theorem, X̄n is approximately normally distributed, and we already saw that for a 
normal distribution, 95% of the probability mass is within 1.96 standard deviations of the mean. Therefore 

¯ ¯the interval [Xn − 1.96 0.76%, Xn − 1.96 0.76%] will cover the true vote share with probability greater · · 
than 95%. For smaller subgroups of voters, the margin of error becomes larger. 

Example 6 A lab carries out a chemical analysis on blood to be used as evidence in a trial. To be 
acceptable as evidence, a 90% confidence interval for the amount of some substance should have length 
less than 0.001g/ml. The machine used for the analysis gives readings which are normally distributed 
around the true value with standard deviation σ = 0.005g/ml. How many readings do we need in order 
to make sure that the 90% confidence interval is shorter than 0.001g/ml? 
The width of a 90% CI is 

σ 0.005 0.01645 
l = 2√

n 
Φ−1(0.95) ≈ 2 √

n 
1.645 = √

n 

Therefore, in order for l ≤ 0.001, we need n ≥ 16.452 = 270.6025, so we’d need at least 271 (independent) 
readings. 

The following example illustrates one way of constructing a confidence interval when the distribution 
of the estimator is not normal. 

1http://www.gallup.com/poll/106630/Gallulp-Daily-Clinton-Moves-Within-Points-Obama.aspx 
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Example 7 Suppose X1, . . . , Xn are i.i.d. with Xi ∼ U [0, θ], and we want to construct a 90% confidence 
interval for θ0. Let 

θ̂ = max{X1, . . . , Xn} = X(n) 

the nth order statistic (as we showed last time, this is also the maximum-likelihood estimator). Even 

though, as we saw, θ̂ is not unbiased for θ, we can use it to construct a confidence interval for θ. 
From results for order statistics, we saw that the c.d.f. of θ̂ is given by the c.d.f. of θ̂ is given by 

⎧
0⎪ �n 

θ ≤ 0 ⎨ � 
θFθ̂(θ) = if 0 < θ ≤ θ0 ⎪⎩ 

1 
θ0 

if θ > θ0 

where we plugged in the c.d.f. of a U [0, θ0] random variable, F (x) = θ
x 
0 
.


In order to obtain the functions for A and B, let us first find constants a and b such that


Pθ0 (a ≤ θ̂ ≤ b) = Fθ̂(b) − Fθ̂(b) = 0.95 − 0.05 = 0.9 

We can find a and b by solving 
Fθ̂(a) = 0.05 and Fθ̂(b) = 0.95 

n nso that we obtain a = 
√

0.05θ0 and b = 
√

0.95θ0. This doesn’t give us a confidence interval yet, since 
looking at the definition of a CI, we want the true parameter θ0 in the middle of the inequalities, and the 
functions on either side depend only on the data and other known quantities. 
However, we can rewrite 

� 
n

� � 
θ̂ θ̂

� 

0.9 = Pθ0 
ˆ = Pθ0 

√
0.05θ0 ≤ ˆ

√
0.95θ0 = Pθ0 

√
0.95 

≤ θ0 ≤ √
0.05 

(a ≤ θ ≤ b) θ ≤ n

n n

Therefore 

� 
max{X1, . . . , Xn} max{X1, . . . , Xn}

� 

[A, B] = [A(X1, . . . , Xn), B(X1, . . . , Xn)] = 
n

, 
n

√
0.95 

√
0.05 

is a 90% confidence interval for θ0. Notice that in this case, the bounds of the confidence intervals depend 
on the data only through the estimator θ̂(X1, . . . , Xn). This need not be true in general. 

Let’s recap how we arrived at the confidence interval: 

1. first get estimator θ̂(X1, . . . , Xn) and the distribution of θ̂. 

2. find a(θ), b(θ) such that


P (a(θ) ≤ θ̂ ≤ b(θ)) = 1 − α


3. rewrite the event by solving for θ 

P (A(X) ≤ θ ≤ B(X)) = 1 − α 

4. evaluate A(X), B(X) for the observed sample X1, . . . , Xn 

5. the 1 − α confidence interval is then given by 

CI = [A(X1, . . . , Xn), B(X1, . . . , Xn)] 
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2.1 Important Cases 

1. θ̂ is normally distributed, Var(θ̂) ≡ σ2 is known: can form confidence interval 
θ̂

[A(X), B(X)] = 
�
θ̂ −

�
σ

θ 
2
ˆΦ

−1 
�
1 − α

� 
, θ̂ + 

�
σ

θ 
2
ˆΦ

−1 
�
1 − α

�� 

2 2 

2. θ̂ is normally distributed, Var(θ̂) unknown, but have estimator Ŝ2 = Var(θ̂): confidence interval is 
given by 

[A(X), B(X)] = 
�
θ̂ −

�
Ŝ2tn−1 

�
1 − α 

2 

� 
, θ̂ + 

�
Ŝ2tn−1 

�
1 − α 

2 

�� 

where tn−1(p) is the pth percentile of a t-distribution with n − 1 degrees of freedom. 

3. θ̂ is not normal, but n > 30 or so: it turns out that all estimators we’ve seen (except for the 
maximum of the sample for the uniform distribution) will be asymptotically normal by the central 
limit theorem (it is not always straightforward how we apply the CLT in a given case). So we’ll 
construct confidence intervals the same way as in case 2. 

4. θ̂ not normal, n small: if the p.d.f. of θ̂ is known, can form confidence intervals from first principles 
(as in the last example). If the p.d.f. of θ̂ is not known, there is nothing we can do. 

The reason for using the t-distribution in the second case is the following: since θ̂ ∼ N 
� 
µ, σn 

2 
� 
, 

θ̂ − µ 

σ/
√

n 
∼ N(0, 1) 

On the other hand, we can check that 
(n − 1)Ŝ2 

σ2 
∼ χn

2 
−1 

since in this setting, Ŝ can usually be written as a sum of squared normal residuals with mean zero and 
variance σ2 . Therefore, 

θ̂−µ
θ̂ − µ σ/

√
n N(0, 1) 

tn−1� 
ˆ

= � 
(n−1) Ŝ2 

∼ �
χ2 

∼
S2/n 

σ2 /
√

n − 1 n−1 

Also note that in the general case 4 (and in the last example involving a uniform), we did not require 

that the statistic θ̂(X1, . . . , Xn) be an unbiased or consistent estimator of anything, but it just had to be 
strictly monotonic in the true parameter. However, the way we constructed confidence intervals for the 
normal cases (with or without knowledge of the variance of θ̂, the estimator has to be unbiased, and in 
case 3 (n large), it would have to be consistent. 
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