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Confidence Intervals (continued) 

The following example illustrates one way of constructing a confidence interval when the distribution of 
the estimator is not normal. 

Example 1 Suppose X1, . . . , Xn are i.i.d. with Xi ∼ U [0, θ], and we want to construct a 90% confidence 
interval for θ0. Let 

θ̂ = max{X1, . . . , Xn} = X(n) 

the nth order statistic (as we showed last time, this is also the maximum-likelihood estimator). Even 

though, as we saw, θ̂ is not unbiased for θ, we can use it to construct a confidence interval for θ. 
From results for order statistics, we saw that the c.d.f. of θ̂ is given by the c.d.f. of θ̂ is given by 

⎧
0 θ ≤ 0⎪⎨ � 

θ 
�n 

Fθ̂(θ) = 
θ0 

if 0 < θ ≤ θ0 ⎪⎩ 
1 if θ > θ0 

where we plugged in the c.d.f. of a U [0, θ0] random variable, F (x) = θ
x 
0 
.


In order to obtain the functions for A and B, let us first find constants a and b such that


Pθ0 (a ≤ θ̂ ≤ b) = Fθ̂(b) − Fθ̂(b) = 0.95 − 0.05 = 0.9 

We can find a and b by solving 
Fθ̂(a) = 0.05 and Fθ̂(b) = 0.95 

n nso that we obtain a = 
√

0.05θ0 and b = 
√

0.95θ0. This doesn’t give us a confidence interval yet, since 
looking at the definition of a CI, we want the true parameter θ0 in the middle of the inequalities, and the 
functions on either side depend only on the data and other known quantities. 
However, we can rewrite 

� 
n

� 
θ̂ θ̂

� 

0.9 = Pθ0 (a ≤ θ̂ ≤ b) = 
√

0.05θ0 ≤ ˆ
√

0.95θ0 

� 
= Pθ0 n

Pθ0 n

θ ≤ n √
0.95 

≤ θ0 ≤ √
0.05 

Therefore 
� 
max{X1, . . . , Xn} max{X1, . . . , Xn}

� 

[A, B] = [A(X1, . . . , Xn), B(X1, . . . , Xn)] = 
n

, 
n

√
0.95 

√
0.05 

is a 90% confidence interval for θ0. Notice that in this case, the bounds of the confidence intervals depend 
on the data only through the estimator θ̂(X1, . . . , Xn). This need not be true in general. 
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Let’s recap how we arrived at the confidence interval: 

1. first get estimator/statistic θ̂(X1, . . . , Xn) and the distribution of θ̂. 

2. find a(θ), b(θ) such that


P (a(θ) ≤ θ̂ ≤ b(θ)) = 1 − α


3. rewrite the event by solving for θ


P (A(X) ≤ θ ≤ B(X)) = P (A(θ̂) ≤ θ ≤ B(θ̂)) = 1 − α


4. evaluate A(X), B(X) for the observed sample X1, . . . , Xn 

5. the 1 − α confidence interval is then given by


CI = [A(X1, . . . , Xn), B(X1, . . . , Xn)]


1.1 Important Cases 

1. θ̂ is normally distributed, Var(θ̂) ≡ σ2 is known: can form confidence interval 
θ̂

[A(X), B(X)] = 
�
θ̂ −

�
σ

θ 
2Φ−1 

�
1 − α 

2 

� 
, θ̂ + 

�
σ

θ 
2
ˆΦ

−1 
�
1 − α 

2 

�� 
ˆ

2. θ̂ is normally distributed, Var(θ̂) unknown, but have estimator Ŝ2 = Var(θ̂): confidence interval is 
given by


[A(X), B(X)] = 
�
θ̂ − 

�
Ŝ2tn−1 

�
1 − α 

2 

� 
, θ̂ + 

�
Ŝ2tn−1 

�
1 − α 

2 

��


where tn−1(p) is the pth percentile of a t-distribution with n − 1 degrees of freedom. 

3. θ̂ is not normal, but n > 30 or so: it turns out that all estimators we’ve seen (except for the 
maximum of the sample for the uniform distribution) will be asymptotically normal by the central 
limit theorem (it is not always straightforward how we apply the CLT in a given case). So we’ll 
construct confidence intervals the same way as in case 2. 

4. θ̂ not normal, n small: if the p.d.f. of θ̂ is known, can form confidence intervals from first principles 
(as in the last example). If the p.d.f. of θ̂ is not known, there is nothing we can do. 

The reason for using the t-distribution in the second case is the following: since θ̂ ∼ N 
� 
µ, σ

2 
� 
,n 

θ̂ − µ 

σ/
√

n 
∼ N(0, 1) 

On the other hand, we can check that 
(n − 1)Ŝ2 

∼ χ2 

σ2 n−1 

since in this setting, Ŝ can usually be written as a sum of squared normal residuals with mean zero and 
variance σ2 . Therefore, 

θ̂−µ
θ̂ − µ 

= 
σ/

√ 

n N(0, 1) 
tn−1�

Ŝ2/n 

� 
(n−1) Ŝ2 

∼ �
χ2 

∼
σ2 /

√
n − 1 n−1 
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Also note that in the general case 4 (and in the last example involving a uniform), we did not require 

that the statistic θ̂(X1, . . . , Xn) be an unbiased or consistent estimator of anything, but it just had to be 
strictly monotonic in the true parameter. However, the way we constructed confidence intervals for the 
normal cases (with or without knowledge of the variance of θ̂, the estimator has to be unbiased, and in 
case 3 (n large), it would have to be consistent. 

2 Hypothesis Testing 

2.1 Main Idea 

Idea: given a random sample from a population, is there enough evidence to contradict some assertion 
about the population? Let’s first define a number of important concepts: 

a hypothesis is an assumption about the distribution of a random variable in a population • 

the maintained hypothesis is a hypothesis which cannot be tested, but which we will assume to be • 
true no matter what. 

a testable hypothesis is a hypothesis which can and will be tested using evidence from a random • 
sample 

the null hypothesis is the hypothesis to be tested • 

the alternative hypothesis are other possible assumptions about the population other than the null • 

The testing problem can be stated as whether the parameter θ0 corresponding to the density f(x θ0)|
which our sample X1, . . . , Xn is drawn from belongs to a certain set of possible parameter values, Θ0. 
We usually write the null hypothesis as 

H0 : θ ∈ Θ0 

which we test against the alternative 
HA : θ ∈ ΘA 

where Θ0 ∩ ΘA = ∅. 
If Θ0 = {θ0} contains only a single parameter value, we say that the hypothesis is simple. A composite 
hypothesis is given by a set Θ containing multiple points, or an entire range of values. 

Example 2 In the most common setup, H0 is simple, and HA composite, e.g. X ∼ N(µ, σ0
2), where σ0

2 

is known, and we want to test whether µ = 0. In this setting, the maintained hypothesis is that the Xis 
are i.i.d. normal and Var(Xi) = σ0

2 . The null hypothesis is H0 : µ = 0 (simple), and we test against the 
alternative hypothesis HA : µ = 0 (composite). 

In order to test the hypothesis we have to gather data, and then either accept or reject the null 
hypothesis based on the data. However, since our data will always be only a sample from the entire 
population, there is always a possibility that we will make a mistake in our decision: The probability of 

True State of Nature 
H0 true H0 false 

reject H0 Type I error correct 
Decision 

not reject H0 correct Type II error 

3 



a type I error of a given test, 
α = P (Type I error) = P (reject H0)|

is called the significance level (or also the size) of the test. If we write 

β = P (Type II error) = P (don’t reject HA)|

then 1 − β is the power of the test. 

Usually we’ll fix the significance level of the test, e.g. at 5%, and then try to construct a test that 
has maximal power given that significance level. So in a sense we prefer to err on not rejecting the null 
hypothesis. 

The logic behind this is a little counter-intuitive at first, but it comes from the empirical problem 
of generalizing from a few observations to an entire population or a scientific law: even though we may 
only have observed instances which conform with our hypothesis about the population, it is sufficient to 
observe one which doesn’t in order to disprove it. Therefore we can use empirical evidence only to reject 
a hypothesis, but never to confirm it. The following is a famous example by the philosopher Bertand 
Russell: 

”Domestic animals expect food when they see the person who usually feeds them. We know 
that all these rather crude expectations of uniformity are liable to be misleading. The man 
who has fed the chicken every day throughout its life at last wrings its neck instead, showing 
that more refined views as to the uniformity of nature would have been useful to the chicken. 
[..] The mere fact that something has happened a certain number of times causes animals and 
men to expect that it will happen again. Thus our instincts certainly cause us to believe that 
the sun will rise to-morrow, but we may be in no better a position than the chicken which 
unexpectedly has its neck wrung.” (Russell, The Problems of Philosophy) 

Therefore, if we want to present evidence that e.g. a certain drug significantly improves a patient’s 
condition, we define the null hypothesis as H0: ”the drug has no effect on the patient’s condition.” 
Rejecting this hypothesis means that we have strong evidence for an effect of the drug. I.e. we always 
choose the null hypothesis as the statement we actually want to disprove. 

As another illustration, we could think of the criminal justice system: in a process, both parties 
present data (evidence) in order to produce a decision ”guilty” or ”not guilty,” and the jury can again 
make two errors: falsely convicting an innocent person (Type I error), or not convicting a criminal (Type 
II error). Most modern legal systems base criminal trials on the presumption of innocence, i.e. the 
accused is assumed to be ”innocent until proven guilty”, or in other words, the burden of proof is on the 
prosecution which has to produce evidence to convince the judge/jury that the accused is in fact guilty. 

Note that decisions taken according to hypothesis tests need not be optimal in the sense that we 
ignore our ex ante probabilities for the null vs. the alternative hypothesis being true, and do not take 
into account the respective costs of making type I or type II errors. For criminal justice, proponents 
of preemption often argue that in many contexts - e.g. terrorism - a type II error may be prohibitively 
costly, so that the legal system should allow for exceptions of the presumption of innocence in some cases. 

In sum, we’d like to formulate a rule which maps each possible outcome of the sample X1, . . . , Xn to 
a decision ”reject” or ”do not reject.” 
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