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Constructing Hypothesis Tests 

If Xi has support SX , then the sample X = (X1, . . . , Xn) has support Sn The critical region of a test 
is a region CX ⊂ Sn of the support of the sample for which we reject the null. 

X . 

X 

The following example illustrates most of the important issues in a standard setting, so you should 
look at this carefully and make sure that you know how to apply the same steps to similar problems. 

Example 1 Suppose X1, . . . , Xn are i.i.d. with Xi ∼ N(µ, 4), and we are interested in testing H0 : µ = 0 
against HA : µ = 1. Let’s first look at the case n = 2: 
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We could design a test which rejects for values of X1 +X2 which are ”too large” to be compatible with 
µ = 0. We can also represent this rejection region on a line: 

This representation is much easier to use if n is large, so it’s hard to visualize the rejection region in 
terms of X1, . . . , Xn directly. However, by condensing the picture from n to a single dimension we may 
loose the ability of specifying really odd-shaped critical regions, but typically those won’t be interesting for 
practical purposes anyway. 

¯So in this example, we will base our testing procedure on a test statistic Tn(X1, . . . , Xn) = Xn and reject

for large values of Tn.

How do we choose k? - we’ll have to trade off the two types of error. Suppose now that n = 25, and since

Xi ∼ N(µ, 4),


4N 0, 25Tn := X̄ ∼ � �

under H0
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Now we can calculate the probabilities of type I and type II error 

k − 0 k¯α = P (X > k|µ = 0) = 1 − Φ = Φ − 
2/5 2/5 

k − 1¯β = P (X ≤ k|µ = 1) = Φ 
2/5 

Therefore, fixing any one of α, β, k determines the other two, and that choice involves a specific tradeoff 
between the probability of type I and type II error - if we increase k, the significance level α goes down, 
but so does power 1 − β. Specifically, if we choose k = 5

3 , α ≈ 6.7%, and β ≈ 15.87%. 
For different sample sizes, we can graph the trade-off between the probability of type I and type II error 
through the choice of k as follows: 
A low value of k would give high power, but also a high significance level, so that increasing k would 
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move us to the left along the frontier. 
How should we choose k? Recall that in the usual setting, the first priority is to control the probability 

α of false rejections, so we’ll choose k to keep the probability of a type I error at an acceptably low level, 
usually 5% or 1%. 
Of course, as n → ∞, for fixed α, the power of the test, 1− β goes to 1. As a convention, we usually say 
that a rejection at the significance level α = 5% is ”significant”, whereas a rejection at α = 1% is ”highly 
significant.” 
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Example 2 In the previous example, the maintained hypothesis was that µ ∈ {0, 1}, but this is a highly 
artificial assumption, and usually we have no reason to believe that this is the case. 
Suppose that as before X1, . . . , X25 is an i.i.d. sample with Xi ∼ N(µ, 4), but now we want to test 

H0 : µ = 0 against HA : µ �= 0 

Now HA is a two-sided composite hypothesis (i.e. under the alternative µ could take several values, some 
on the left, some on the right of µ0). Also we’ll again look at a test that’s only based on the sample mean, 
X̄25 - what should the critical region now look like?

Intuitively, it makes sense to reject H0 for both large and small values of X̄, i.e. we are unlikely to

see values in either tail if the null hypothesis is true, and the alternative hypothesis states that we are

interested in evidence that µ is either greater or smaller than 0.
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f(� | � o) = f(Xn | � o) 

Therefore, we are going to choose two values k1 and k2 such  
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¯ ¯ k2 k1
α = P (X25 > k2|µ = 0) + P (X25 < k1|µ = 0) = 1 − Φ + Φ 

2/5 2/5 

What is β? Since the alternative does not specify a single probability law, but rather a continuum of them, 
β is not well-defined, i.e. for fixed µ, 

� � �� � � 

¯ ¯ k2 − µ k1 − µ
β(µ) = P (X25 > k2|µ) + P (X25 < k1|µ) = 1 − Φ + Φ 

2/5 2/5 

Usually for a desired significance level α, we choose k1, k2 symmetrically about the value postulated by 
the null hypothesis (note that since the normal distribution is single-peaked and symmetric, this makes 
the critical region as large as possible. 

The last example should remind you of the way we constructed confidence intervals for µ from a 
normal population with known variance: the above procedure is in fact identical to the following: 

1. construct a 1 − α confidence interval [A(X), B(X)] for µ (case 1, see notes for last class) 

2. reject H0 if µ0 = 0 ∈/ [A(X), B(X)] 

Since we construct the interval [A(X), B(X)] in such a way that Pθ(A(X) < θ < B(X)) = 1−α implicitly 
under the null assumptions, so that 

P (θ0 ∈/ [A(X), B(X)]|H0 : θ = θ0) = α 
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1 Evaluation and Construction of Tests 

As in our discussion of estimation, we first introduced the general idea and saw a few examples. Now we 
will see how to choose among tests and how to construct them from scratch. 

1.1 Properties of Tests 

For any test we care about its level of significance α = P (type I) and its power 1 − β = 1 − P (type II).

If H0 and HA are both simple hypotheses, α and β are well-defined for given α, and we can simply choose

the test with the highest 1 − β, the most powerful test.

If HA is composite, and H0 is simple, we need a metric for comparing power functions 1 − β(θ) =

1 − P (type II|θ) for a given size α. A test is uniformly most powerful (UMP) when it is at least as

powerful at every θ ∈ HA as any other test of the same size. In general, a UMP test need not exist.


Example 3 Sometimes it is possible to find a uniformly most powerful test: Suppose Xi ∼ N(µ, 4), and 
we are interested in testing 

H0 : µ = 0 against HA : µ > 0 

¯Recall that the most powerful test for H0 : µ = 0 against HA : µ = 1 took the form of reject if X > k, 
the general form of the test does not change no matter what µA as long as µA > µ0. Therefore a most 

¯powerful test for H0 : µ = 0 against HA : µ > 0 will also take the form ”reject if Xn > k.” 

For the following important result, denote f0(x) = f0(x1, . . . , xn) the joint p.d.f. of the sample 
X1, . . . , Xn under the simple null hypothesis H0 : µ = µ0, and fA(x) the joint p.d.f. of the sample under 
HA : µ = µA. 

Proposition 1 (Neyman-Pearson Lemma) In testing f0 against fA (where both H0 and HA are 
simple hypotheses), the critical region 

f0(x)
C(k) = x : < k 

fA(x) 

is most powerful for any choice of k ≥ 0. 

Note that the choice of k depends on the specified significance level α of the test. This means that the 
most powerful test rejects if for the sample X1, . . . , Xn, the likelihood ratio 

f0(X1, . . . , Xn) 
r(X1, . . . , Xn) = 

fA(X1, . . . , Xn) 
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is low, i.e. the data is much more likely to have been generated under HA. 

Reject 
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r(x)= 
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The most powerful test given in the Neyman-Pearson Lemma explicitly solves the trade-off between 
size 

� 

α = P (reject|H0) = f0(x)dx 
C(k) 

and power 

1 − β = P (reject|HA) = fA(x)dx 
C(k) 

at every point x in the sample space (where the integrals are over many dimensions, e.g. typically 
f0(x)

x ∈ Rn). From the expressions for α and 1−β we can see that the likelihood ratio 
fA(x) gives the ”price” 

of including x with the critical region in terms of how much we ”pay” in terms of size α relative to the 
gain in power from including the point in the critical region CX . 

Therefore, we should start constructing the critical region by including the ”cheapest” points x - i.e. 
those with a small likelihood ratio. Then we can go down the list of x ordered according to the likelihood 
ratio and continue including more points until the size α of the test is down to the desired level. 

Example 4 A criminal defendant (D) is on trial for a purse snatching. In order to convict, the jury 
must believe that there is a 95% chance that the charge is true. 
There are three potential pieces of evidence the prosecutor may or may not have been able to produce, and 
in a given case the jury takes a decision to convict based only on which out of the three clues it is presented 
with. Below are the potential pieces of evidence, assumed to be mutually independent, the probability of 
observing each piece given the defendant is guilty, and the probability of observing each piece given the 
defendant is not guilty 

guilty not guilty likelihood ratio 
1. D ran when he saw police coming 0.6 0.3 1/2 
2. D has no alibi 0.9 0.3 1/3 
3. Empty purse found near D’s home 0.4 0.1 1/4 
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In the notation of the Neyman-Pearson Lemma, x can be any of the 23 possible combinations of pieces 
of evidence. Using the assumption of independence, we can therefore list all possible combinations of clues 
with their respective likelihood under each hypothesis and the likelihood ratio. I already ordered the list by 
the likelihood ratios in the third column. In the last column, I added 

α(k) = f0(x) 
r(x)≤k 

the cumulative sum over the ordered list of combinations x. 

guilty fA(x) not guilty f0(x) likelihood ratio r(x) = f0(x) α(k)
fA(x) 

1. all three clues 216/1000 9/1000 0.0417 9/1000 
2. no alibi,found purse 144/1000 21/1000 0.1458 30/1000 
3. ran,no alibi 324/1000 81/1000 0.25 111/1000 
4. no alibi 216/1000 189/1000 0.875 300/1000 
5. ran,found purse 24/1000 21/1000 0.875 321/1000 
6. found purse 16/1000 49/1000 3.0625 370/1000 
7. ran 36/1000 189/1000 5.25 559/1000 
8. none of the clues 24/1000 441/1000 18.375 1 

The jury convicting the defendant only if there is at least 95% confidence that the charge is true 
corresponds to a probability of false conviction (i.e. if the defendant is in fact innocent) of less than 5%. 
In the terminology of hypothesis test, the sentence corresponds to a rejection of the null hypothesis that 
the defendant is innocent using the most powerful test of size α = 5%. 
Looking at the values of α(k) in the last column of the table, we can read off that including more than 
the first two combinations of the evidence raises the probability of a false conviction α to more than 5%. 
Therefore, the jury should convict the defendant if he doesn’t have an alibi and the empty purse was found 
near his home, regardless whether he ran when he saw the police. In principle, the jury could in addition 
randomize when the defendant ran, had no alibi, but no purse was found (that is case 3): if in that case, 
the jury convicted the defendant with probability 50−30 ≈ 1 , the probability of a false conviction would be 81 4
exactly equal to 5%, but this would probably not be considered an acceptable practice in criminal justice. 

Example 5 We can now show that a test based on the mean is in fact most powerful in the normal case.

Suppose Xi ∼ N(µ, 4), and we test H0 : µ = 0 against HA : µ = 1, where we observe an i.i.d. sample

X = (X1, . . . , X25) of 25 observations.

Since the observations are i.i.d. normal, the likelihood ratio evaluated at the observed sample is given by


(Xi−0)2 

2·4f(X|µ = 0) 
25 √

2
1 
π2 

e− 

r(X) = = 
(Xi−1)2f(X|µ = 1) 1 

2·4i=1 √
2π2 

e− 

25 
1 2 2 

= e 8 [(Xi −2Xi+1)−(X
i )] 

i=1 
25 1 P25 25 1 ¯

= e 8 − 4 i=1 Xi = e 8 − 100 X25 

We can see that r(X) depends on the sample only through the sample mean X̄25 and is strictly decreasing 
in X̄25. Therefore, the critical region of a most powerful test takes the form 

CX(k) = {x : r(x) ≤ k} 
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