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Proposition 1 (Neyman-Pearson Lemma) In testing f0 against fA (where both H0 and HA are 
simple hypotheses), the critical region 

f0(x)
C(k) = x : < k 

fA(x) 

is most powerful for any choice of k ≥ 0. 

Note that the choice of k depends on the specified significance level α of the test. This means that the 
most powerful test rejects if for the sample X1, . . . , Xn, the likelihood ratio 

f0(X1, . . . , Xn) 
r(X1, . . . , Xn) = 

fA(X1, . . . , Xn) 

is low, i.e. the data is much more likely to have been generated under HA. 

Reject 

Fo(x) 

FA(x) 

Cx(k) 

r(x)= 

k 

�A�o 

The most powerful test given in the Neyman-Pearson Lemma    
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explicitly solves the trade-off between 
size 

� 

α = P (reject H0) = f0(x)dx|
C(k) 

and power 

1 − β = P (reject|HA) = fA(x)dx 
C(k) 
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at every point x in the sample space (where the integrals are over many dimensions, e.g. typically 
f0(x)

x ∈ R
n). From the expressions for α and 1−β we can see that the likelihood ratio fA(x) gives the ”price” 

of including x with the critical region in terms of how much we ”pay” in terms of size α relative to the 
gain in power from including the point in the critical region CX . 

Therefore, we should start constructing the critical region by including the ”cheapest” points x - i.e. 
those with a small likelihood ratio. Then we can go down the list of x ordered according to the likelihood 
ratio and continue including more points until the size α of the test is down to the desired level. 

Example 1 A criminal defendant (D) is on trial for a purse snatching. In order to convict, the jury 
must believe that there is a 95% chance that the charge is true. 
There are three potential pieces of evidence the prosecutor may or may not have been able to produce, and 
in a given case the jury takes a decision to convict based only on which out of the three clues it is presented 
with. Below are the potential pieces of evidence, assumed to be mutually independent, the probability of 
observing each piece given the defendant is guilty, and the probability of observing each piece given the 
defendant is not guilty 

guilty not guilty likelihood ratio 
1. D ran when he saw police coming 0.6 0.3 1/2 
2. D has no alibi 0.9 0.3 1/3 
3. Empty purse found near D’s home 0.4 0.1 1/4 

In the notation of the Neyman-Pearson Lemma, x can be any of the 23 possible combinations of pieces 
of evidence. Using the assumption of independence, we can therefore list all possible combinations of clues 
with their respective likelihood under each hypothesis and the likelihood ratio. I already ordered the list by 
the likelihood ratios in the third column. In the last column, I added 

α(k) = f0(x) 
r(x)≤k 

the cumulative sum over the ordered list of combinations x. 

guilty fA(x) not guilty f0(x) likelihood ratio r(x) = f0(x) α(k)fA(x) 

1. all three clues 216/1000 9/1000 0.0417 9/1000 
2. no alibi,found purse 144/1000 21/1000 0.1458 30/1000 
3. ran,no alibi 324/1000 81/1000 0.25 111/1000 
4. no alibi 216/1000 189/1000 0.875 300/1000 
5. ran,found purse 24/1000 21/1000 0.875 321/1000 
6. found purse 16/1000 49/1000 3.0625 370/1000 
7. ran 36/1000 189/1000 5.25 559/1000 
8. none of the clues 24/1000 441/1000 18.375 1 

The jury convicting the defendant only if there is at least 95% confidence that the charge is true 
corresponds to a probability of false conviction (i.e. if the defendant is in fact innocent) of less than 5%. 
In the terminology of hypothesis test, the sentence corresponds to a rejection of the null hypothesis that 
the defendant is innocent using the most powerful test of size α = 5%. 
Looking at the values of α(k) in the last column of the table, we can read off that including more than 
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the first two combinations of the evidence raises the probability of a false conviction α to more than 5%. 
Therefore, the jury should convict the defendant if he doesn’t have an alibi and the empty purse was found 
near his home, regardless whether he ran when he saw the police. In principle, the jury could in addition 
randomize when the defendant ran, had no alibi, but no purse was found (that is case 3): if in that case, 
the jury convicted the defendant with probability 50−30 1 

81 ≈ 4 , the probability of a false conviction would be 
exactly equal to 5%, but this would probably not be considered an acceptable practice in criminal justice. 

Construction of Tests 

In general there is no straightforward answer to how we should construct an optimal test. The Neyman­
Pearson Lemma gave us a simple recipe for a most powerful test of one simple hypothesis against another, 
but in most real-world applications, the alternative hypothesis is composite. The following is a list of 
recommendations which do not always lead to a uniformly most powerful test (which sometimes does not 
even exist), but usually yield reasonable procedures: 

1. if both H0 and HA are simple, the Neyman-Pearson Lemma tells us to construct a statistic


f0(x)

T (x) = 

fA(x) 

and reject if T (X) > k for some appropriately chosen value k (typically k is chosen in a way that 
makes sure that the test has size α). This test is also called the likelihood ratio test (LRT). 

2. if H0 : θ = θ0 is simple and HA : θ ∈ ΘA is composite and 2-sided, we construct a 1 − α 
confidence interval [A(X), B(X)] (usually symmetric) using an estimator θ̂. We then reject if 
θ0 ∈/ [A(X), B(X)]. This gives us a test of size α for H0. 

3. if H0 : θ = θ0 is simple and HA : θ ∈ ΘA is composite and one-sided, we construct a symmetric 
1 − 2α confidence interval for θ and reject only if the null value is outside the confidence interval 
and in the relevant tail in order to obtain a size α test. 

4.	 either H0 : θ ∈ Θ0 or HA : θ ∈ ΘA composite (or both): define the statistic 

T (x) = 
maxθ∈Θ0 L(θ) 

= 
maxθ∈Θ0 f(x|θ) 

maxθ∈ΘA∪Θ0 L(θ) maxθ∈ΘA∪Θ0 f(x|θ) 

and reject if T (X) < k for some appropriately chosen constant k. This type of test is called the 
generalized likelihood ratio test (GLRT). 

Since we haven’t discussed the last case yet, some remarks are in order: 

•	 the test makes sense because T (X) will tend to be small if the data don’t support H0 

•	 densities are always positive, so the statistic will be between 0 and 1 (this is because the set over 
which the density is maximized in the denominator contains the set over which we maximize in the 
numerator) 

•	 we need to know the exact distribution of the test statistic under the null hypothesis, so that we 
can find an appropriate critical value k. For most distributions we have that in large samples 

−2 log T (X) ∼ χ2 
p 

where p = dim(Θ0 ∪ ΘA) − dim(Θ0). 

•	 the GLRT does not necessarily share the optimality properties of the LRT, in fact in this setting 
with a composite alternative hypothesis a uniformly most powerful test often does not even exist. 
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2 Examples 

Example 2 Assume that babies’ weights (in pounds) at birth are distributed according to X ∼ N(7, 1). 
Now suppose that if an obstetrician gave expecting mothers poor advice on diet, this would cause babies 
to be on average 1 pound lighter (but have same variance). For a sample of 10 live births, we observe 
X̄10 = 6.2. 

•	 How do we construct a 5% test of the null that the obstetrician is not giving bad advice against the 
alternative that he is? We have 

H0 : µ = 7 against HA : µ = 6 

We showed that for the normal distribution, it is optimal to base this simple test only on the sample 
¯	 ¯ ¯mean, X10, so that T (x) = x̄10. Under H0, X10 ∼ N(7, 0.1) and under HA, X10 ∼ N(6, 0.1). The 

test rejects H0 if X̄10 < k. We therefore have to pick k in a way that makes sure that the test has 
size 5%, i.e. 

0.05 = P (X̄10 < k µ = 7) = Φ 
k − 7 | √

0.1 

where Φ( ) is the standard normal c.d.f.. Therefore, we can obtain k by inverting this equation ·

1.645 
k = 7 +

√
0.01Φ−1(0.05) ≈ 7 − √

10 
≈ 6.48 

Therefore, we reject, since X̄10 = 6.2 < 6.48 = k. 

•	 What is the power of this test? 

¯P ( µ = 6) = Φ
6.48 − 6 

X10 < 6.48| √
0.1 

≈ Φ(1.518) ≈ 93.55% 

•	 Suppose we wanted a test with power of at least 99%, what would be the minimum number n of 
newborn babies we’d have to observe? The only thing that changes with n is the variance of the 
sample mean, so from the first part of this example, the critical value is kn = 1.645 7− √

n 
, whereas the 

¯power of a test based on Xn and critical value kn is 

¯1 − β = P (Xn < kn|µ = 6) = Φ 
�√

n − 1.645 

Setting 1 − β ≥ 0.99, we get the condition 

√
n − 1.645 ≥ Φ−1(0.99) = 2.326 n ≥ 3.9712 ≈ 15.77 ⇔

This type of power calculations is frequently done when planning a statistical experiment or survey 
- e.g. in order to determine how many patients to include in a drug test in order to be able to detect 
an effect of a certain size. Often it is very costly to treat or survey a large number of individuals, 
so we’d like to know beforehand how large the experiment should be so that we will be able to detect 
any meaningful change with sufficiently high probability. 

Example 3 Suppose we are still in the same setting as in the previous example, but didn’t know the 
variance. Instead, we have an estimate S2 = 1.5. How would you perform a test? As we argued earlier, 
the statistic 

X̄n − µ0
T := 

S/
√

n 
∼ tn−1 
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is student-t distributed with n − 1 degrees of freedom if the true mean is in fact µ0. Therefore we reject 
H0 if 

¯
T = 

Xn − 7 
< t9(5%) 

S/
√

10 

Plugging in the values from the problem, T = −√
1

0

.

.

5
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/10 
≈ −2.066, which is smaller than t9(0.05) = −1.83. 

Example 4 Let Xi ∼ Bernoulli(p), i = 1, 2, 3. I.e. we are flipping a bent coin three times independently, 
and Xi = 1 if it comes up heads, otherwise Xi = 0. We want to test H0 : p = 3

1 against HA : p = 3
2 . 

Since both hypotheses are simple, can use likelihood ratio test 

�3 � �Xi 
� �1−Xi 

P

3 
3 

T = 
f0(X)

= i=1 3
1 

3
2 

=
23−

P

i=1 Xi 

= 23−2
P

i=1 Xi 

fA(X) �3 � 

2
�Xi 

� 

1
�1−Xi Xi 

3 
i=1 2

i=1 3	 3 

Therefore, we reject if 
3 

23−2
P

i

3

=1 Xi ≤ k (3 − 2 
� 

Xi) log 2 ≤ log k⇔
i=1 

which is equivalent to X̄3 ≥ 2
1 − log k . In order to determine k, let’s list the possible values of X̄3 and 6 log 2

their probabilities under H0 and HA, respectively: 

X̄3 Prob. under H0 Prob. under HA cumul. prob. under H0 

1 1 8 1 
27 27 27 

2 6 12 7 
3 27 27 27 
1 12 6 19 
3 27 27 27 
0 8	 1 127	 27 

So if we want the size of the test equal to α = 27	 3
1 , we could reject if and only if X̄3 > 2 , or equivalently 

we can pick k = 2
1 . The power of this test is equal to 

8¯1 − β = P (X3 = 1|HA) =
27 

≈ 29.63% 

Example 5 Suppose we have one single observation generated by either 

f0(x) =	
2x if 0 ≤ x ≤ 1 

or fA(x) = 
2 − 2x if 0 ≤ x ≤ 1 

0 otherwise 0 otherwise 

•	 Find the testing procedure which minimizes the sum of α+β - do we reject if X = 0.6? Since we only 
have one observation X, it’s not too complicated the critical region directly in terms of X, and there 
is nothing to be gained by trying to find some clever statistic (though of course Neyman-Pearson 
would still work here). By looking at a graph of the densities, we can convince ourselves that the 
test should reject for small values of X. The probability of type I and type II error is, respectively, 

� k 

α(k) = P (reject H0) = 2xdx = k2|
0 

for 0 ≤ k ≤ 1, and 

� 1 

β(k) = P (don’t reject|HA) = 
k 

(2 − 2x)dx = 2(1 − k) − 1 + k2 = 1 − k(2 − k) 
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Therefore, minimizing the sum of the error probabilities over k,


min {α(k) + β(k)} = min {k2 + 1 − k(2 − k)} = min {2k2 + 1 − 2k}

k k	 k 

Setting the first derivative of the minimand to zero, 

1 
0 = 4k − 2 ⇔ k =

2 

Therefore we should reject if X < 2
1 , and α = β = 4

1 . Therefore, we would in particular not reject 
H0 for X = 0.6. 

•	 Among all tests such that α ≤ 0.1, find the test with the smallest β. What is β? Would you reject if 
X = 0.4? - first we’ll solve α(k) = 0.1 for k. Using the formula from above, k̄ = 

√
0.1. Therefore, 

¯β(k̄) = 1 − 2k̄ + k2 = 1.1 − 2
√

0.1 ≈ 46.75% 

Since k = 
√

0.1 ≈ 0.316 < 0.4, we don’t reject H0 for X = 0.4. 

Example 6 Suppose we observe an i.i.d. sample X1, . . . , Xn, where Xi ∼ U [0, θ], and we want to test 

H0 : θ = θ0 against HA : θ = θ0, θ > 0 

There are two options: we can either construct a 1 − α confidence interval for θ and reject if it doesn’t 
cover θ0. Alternatively, we could construct a GLRT test statistic 

L(θ0)
T = 

maxθ∈R+ L(θ) 

The likelihood function is given by 

n � � �n 
�	 1 for 0 ≤ Xi ≤ θ, i = 1, . . . , n 

L(θ) = fX(Xi|θ) = 
0 

θ 
otherwise 

i=1 

The denominator of T is given by the likelihood evaluated at the maximizer, which is the maximum 
likelihood estimator, θ̂MLE = X(n) = max{X1, . . . , Xn}, so that 

� �n 

max L(θ) = L(θ̂MLE) = 
1 

θ∈R+	 X(n) 

Therefore, 
L(θ0) 

� 

X(n) 
�n 

T = = 
maxθ∈R+ L(θ) θ0 

In order to find the critical value k of the statistic which makes the size of the test equal to the desired 
level, we’d have to figure out the distribution under the null θ = θ0 - could look this up in the section on 
order statistics. 
As an aside, even though we said earlier that for large n, the GLRT statistic is χ2-distributed under the 
null, this turns out not to be true for this particular example because the density has a discontinuity at 
the true parameter value. 
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