
14.381, Fall 2006 
Problem Set 5 
Due: Nov. 16, 2006 (in class) 

1.	Derive the OLS estimate for β. So much of what follows builds off of the basic 
ideas contained in this solution that you should be able to construct β̂ in your sleep. 
Yes, you can just copy the results from class or one of many books, but you’ll be thankful 
later if solving this on your own is second nature. 

(a) What is OLS trying to minimize?	 Discuss (briefly)  why the  may or may  not be  
a good idea. 

(b)  What does it mean  to be “the best  linear predictor”?  

(c) Suppose you have the regression equation y = Xβ + ε. Derive the OLS estimate 
for β using 

1. Summation notation and 
2.	Matrix notation. 

2.	 Interpreting regression coefficients. It’s maddening to listen to someone present 
their results as “ β1 is 0.2 with a standard error of 0.08, β2 is 1.4 ....” The point 
of  econometrics is to be able to  say something about your data. Here’s a chance to 
practice interpreting regression coefficients on some numbers that admittedly don’t say 
much. 

Suppose you run the regression 

Gi = β1 + β2incomei + β3 ln gaspricei + β4newcari + εi (1) 

where Gi is individual i’s gas consumption, gaspricei is the price of gas in her neigh-
borhood, and newcari is a dummy for whether or not she owns a new car. Suppose 
your estimate for β is [2.1, 0.01, -0.1, -150.2]. Use each of the coefficients in a sentence 
(for example, the coefficient on β3 implies that when gas prices change by ... consumers 
spend ... more/less on gas). For interpreting log coefficients it may be useful to think 
about taking partial derivatives as in β3 = ∂G/∂ ln gasprice. What if the specification 
looked like 

ln Gi = β1 + β2incomei + β3 ln gaspricei + β4newcari + εi?  (2)  

3.	 Projection and residual matrices. You’ll be using these all the time, so the goal 
of this problem is to get you comfortable working with them. 

Define P ≡ X(X 0X)−1X 0 and M ≡ I − P . 

(a) What does P do geometrically (hint: what does P stand for)? How about M? 

(b) Show that P and M are symmetric and idempotent. What is PM? 

(c) Suppose you have the model y = X1β1 + X2β2 + ε. Define Pj ≡ Xj(Xj
0Xj )

−1Xj
0 

.
and P as above with X = [X1..X2]. What  is  P1P ? How  about  M1M? P1X1? 
M1X1? Explain intuitively why these answers make sense (think about your 
answers to a). 
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4.	 Partitioned Regression. Once, and only once, you should work through by hand 
the math required to solve  for  β in the partitioned regression model. Not only might it 
become necessary on an exam, but the process captures many of the matrix manipulation 
you’ll have to use elsewhere. Here you know what the answer is, and besides, it’s a 
budding econometrician’s Red Badge of Courage. 

Consider the model 
y = X β + ε (3) 

n×1 n×(k1+k2)(k1+k2)×1 n×1 h i h i
where X can be decomposed into X1 X2 and β as β01 β2

0 0 
.  Thus,  the  

n×k1 n×k2 1×k1 1×k2 

regression can be written as 

y = X1β1 +X2β2 + ε. 	(4)  

Let Pj ≡ Xj(Xj
0 Xj)

−1Xj
0 , i.e., our old friend the projection matrix onto Xj , and  Mj ≡

I − Pj . Show the following: 

(a) The normal equations (the first order conditions for OLS) are 

X1
0X1β̂1 +X1

0X2β̂2 = X1
0y, 	(5)  

X2
0X1β̂1 +X2

0X2β̂2 = X2
0y. 	(6)  

Some helpful hints: (1) the transpose of a scalar equals the scalar (obvious but 
useful) and ∂Ax/∂x = A0. 

(b) β̂2 = (X̃
0 X̃2)

−1X̃ 0 ỹ, where  X̃2 ≡ M1X2 and ỹ ≡ M1y.2 2 

1.	 First, interpret what this form of the regression is doing, that is, if this were 
a simple univariate model, what would you be regressing on what. 

2.	 Next, try to show (b) by solving the normal equations (Hint: try solving (5) 
for X1β̂1 and use the fact that M1 is symmetric and idempotent). 

3.	 Finally, work through the gruesome math of matrix inversion (like I said, you 
should do this once and only one in your lifetime). The formula (for those of 
you who don’t feel like deriving it) is in (A-74) on p. 824 of the fifth edition 
of Greene.1 If working through this math seems too painful, just wait for 
the solution set, but you should work through the details once you see it. 

5.	Cubic Spline Approximation. The cubic spline takes the form: 

2 3 3 3 xt = f (wt) =
¡
1, wt, w  , wt , (wt − t1) , ..., (wt − tr)

¢0 
.t + + 

How many continuous derivatives does f (wt)
0 b have with respect to wt, for  any  

(r + 4)× 1 vector b? 

1Appendix A of Greene is your friend: a great reference for all the matrix algebra few can remember. 
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6.	Monte Carlo. Through out the course, we’ll be doing a number of Monte Carlo 
simulations, the main purpose of which is to build intuition. You can use Matlab, Stata 
(without the canned commands), Gauss, Mathmatica, or the like for the programming, 
but we’ll be able to offer  you more constructive feedback if you  stick with Matlab or  
Stata. The purpose of this problem is to introduce the mechanics of OLS without 
relying on the canned reg command or its ilk and to introduce you to basic simulation 
programming. We strongly encourage you to write clean code (we’ll distribute an 
example shortly) and to annotate your files so that when you return to them later 
you’ll have some idea what the heck you were thinking. 

Consider 
yi = xiβ + εi (7) 

where x1 is uniformly distributed on [1, 5], εi is N(0, 1), and  i = {1, ..., I}. Suppose  
that the true value of β is 2. Repeat the following 1000 times: 

(a) Let I = 10, and generate 10 observations from (7). You’ll use a random number 
generator to construct 10 × 1 vectors of i.i.d. random variables x and ε, then  
you’ll construct y. 

(b) Calculate β̂ and s2(X 0X)−1 . Store the results in a 1000 × 2 matrix (or 2 1000 × 1 
vectors). 

(c)  Plot your results  for both  β̂ and var(ˆc β) on a two histograms, each using equally 
spaced bins (say 25 or 51, your choice). 

Repeat this exercise for I = 100, 1000, and  100, 000. Marvel at the power of larger 
samples and save your results for next week. 

7.	Approximation Exercise. The following table shows the conditional mean of wages 
E [w|e] given education e: 

E [w|e] 5.84 5.94 5.97 6.08 6.24 6.41 6.45 6.76 6.57 6.88 7.31 6.98 
e 8 9 10 11 12 13 14 16 17 18 19 20 

Try you best to find a parsimonious functional form x = f (e) :  R RK , such  that  → 
x0b approximates E [w|e] for some constant K × 1 vector b. Restrict the dimension of 
your proposed x to be no more than 8, i.e., K ≤ 8. Calculate and show the RMSAE 
and the MAE. 

Again, you can use any software for the programming, but we’ll be able to offer better 
feedback if you stick with Matlab. The example is the same as the one on the lecture 
handout. You might have noticed that there is an R-code attached to the notes. DO 
NOT try to decipher the code or to copy the code. It may take you a long time to 
figure it out! As a novice in R, you’ll be better off to write your own code from scratch 
at this point. Be patient, and you’ll get there eventually. 
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