Lecture 1

Distributions and Normal Random Variables

1 Random variables

1.1 Basic Definitions

Given a random variable X, we define a cumulative distribution function (cdf), Fx : R — [0, 1], such that
Fx(t) = P{X <t} for all t € R. Here P{X < t} denotes the probability that X < t. To emphasize that
random variable X has cdf Fx, we write X ~ Fx. Note that Fx(t) is a nondecreasing function of ¢.

There are 3 types of random variables: discrete, continuous, and mixed.

Discrete random variable, X is characterized by a list of possible values, X = {z1,...,2,}, and their
probabilities, p = {p1, ..., pn }, where p; denotes the probability that X will take value x;, i.e. p; = P{X = z;}
for all e =1,...,n. Note that p; +...+p, =1 and p; > 0 for all i = 1, ..., n by definition of probability. Then
the cdf of X is given by Fix () =3 ;1 .0, < Pj-

Continuous random variable, Y, is characterized by its probability density function (pdf), fy : R — R,
such that P{a < Y < b} = f; fr(s)ds. Note that fjoo; fr(s)ds = 1 and fy(s) > 0 for all s € R by
definition of probability. Then the cdf of Y is given by Fy (t) = fioo fy(s)ds. By the Fundamental Theorem
of Calculus, fy(t) = dFy(t)/dt.

A random variable is referred to as mized if it is not discrete and not continuous.

If ¢df F of some random variable X is strictly increasing and continuous then it has inverse, ¢(z) =
F~1(z). Tt is defined for all x € (0,1). Note that

P{X <q(@)} =P{X < F ' (2)} = F(F'(z)) = 2

for all z € (0,1). Therefore ¢(x) is called the a-quantile of X. Tt is such a number that random variable X
takes a value smaller or equal to this number with probability z. If I is not strictly increasing or continuous,
then we define g(z) as a generalized inverse of F, i.e. ¢(x) = inf{t € R: F(t) > z} for all z € (0,1). In
other words, ¢(x) is a number such that F(q(z)+¢€) > z and F(g(xz) —¢) < z for any € > 0. As an exercise,
check that P{X < q(x)} > «.
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1.2 Functions of Random Variables

Suppose we have random variable X and function g : R — R. Then we can define another random variable
Y = g(X). The cdf of Y can be calculated as follows

Fy(t) = P{Y <t} = P{g(X) <t} = P{X € g (=00, ]},

! may be the set-valued inverse of g. The set g~!(—o0,t] consists of all s € R such that g(s) €

where g~
(—o00,t], i.e. g(s) < t. If g is strictly increasing and continuously differentiable then it has strictly increasing
and continuously differentiable inverse ¢! defined on set g(R). In this case P{X € g7 !(—o0,t]} = P{X <

g Y (t)} = Fx(g71(¢)) for all t € g(R). If, in addition, X is a continuous random variable, then

(dg(s))l
s=g~1(t) ds
for all t € g(R) . If ¢t ¢ g(R), then fy(t) =0.

One important type of function is a linear transformation. If Y = X — a for some a € R, then

fy(t)

_dFy(t) _ dFx(g7' (1) _ (dFX(s)>

dg(s)\ "
dt dt ds

= fx(g7'(®) <ds

s=g71(1)

=971 ()

Fy(t)=P{Y <t} =P{X -a<t}=P{X <t+a}=Fx(t+a)

In particular, if X is continuous, then Y is also continuous with fy(¢) = fx(t +a). If Y = bX with b > 0,
then
Fy(t) = P{bX <t} = P{X <t/b} = Fx(t/b).

In particular, if X is continuous, then Y is also continuous with fy (t) = fx(¢/b)/b.

1.3 Expected Value

Informally, the expected value of some random variable can be interpreted as its average. Formally, if X is

a random variable and g : R — R is some function, then, by definition,
Elg(X)] = glx:)p:

for discrete random variables and

Elg(X)] = / o) fx (2)dz

— 00
for continuous random variables.

Expected values for some functions g deserve special names:
e mean: g(z) =z, E[X]
e second moment: g(z) = 2%, E[X?]

e variance: g(r) = (v — E[X))?, E[(X — E[X])?]



e k-th moment: g(z) = z*, E[X*]
e k-th central moment: E[(X — EX)¥]

The variance of random variable X is commonly denoted by V(X).

1.3.1 Properties of expectation

1) For any constant a (non-random), Ela] = a.

2) The most useful property of an expectation is its linearity: if X and Y are two random variables and
a and b are two constants, then E[aX + bY] = aE[X] + bE[Y].

3)If X is a random variable, then V(X) = E[X?] — (E[X])?. Indeed,

V(X) = E[(X - E[X])
= FE[X?-2XE[X]+ (E[X])?]
= EB[X’] - E2XE[X]] + E[(B[X])’]
= BIX’] - 2E[X]E[X] + (E[X])*
= E[X?] - (B[X))®

4) If X is a random variable and a is a constant, then V(aX) = a*V(X) and V(X + a) = V(X).

1.4 Examples of Random Variables

Discrete random variables:

e Bernoulli(p): random variable X has Bernoully(p) distribution if it takes values from X = {0,1},
P{X =0} =1—pand P{X =1} = p. Its expectation F[X] =1-p+0-(1—p) = p. Its second moment
E[X?]=12-p+ 0% (1 — p) = p. Thus, its variance V(X) = E[X?] — (E[X])? = p — p? = p(1 — p).
Notation: X ~ Bernoulli(p).

e Poisson(A): random variable X has a Poisson(\) distribution if it takes values from X = {0,1,2,...}
and P{X = j} = e7*\/jl. As an exercise, check that E[X] = X and V(X) = \. Notation: X ~
Poisson(A}.

Continuous random variables:

e Uniform(a,b): random variable X has a Uniform(a, b) distribution if its density fx(z) =1/(b—a) for
z € (a,b) and fx(x) = 0 otherwise. Notation: X ~ U(a,b).

e Normal(ju,0?): random variable X has a Normal(u, 02) distribution if its density fx(z) = exp(—(z —
1)?/(202))/(v/2ro) for all z € R. Its expectation E[X] = u and its variance V(X) = o0%. Notation:
X ~ N(u,0?). As an exercise, check that if X ~ N(u,0?), then Y = (X — p)/o ~ N(0,1). Y is
said to have a standard normal distribution. It is known that the cdf of N(u,0?) is not analytical,

i.e. it can not be written as a composition of simple functions. However, there exist tables that give



its approximate values. The cdf of a standard normal distribution is commonly denoted by @, i.e. if
Y ~ N(0,1), then Fy(t) = P{Y <t} = ®(t).

2 Bivariate (multivariate) distributions

2.1 Joint, marginal, conditional

If X and Y are two random variables, then Fx y (z,y) = P{X < ,Y <y} denotes their joint cdf. X and Y’
are said to have joint pdf fxy if fxy(z,y) > 0for all z,y € R and Fx y(z,y) = [*__ [Y_ fxy(s,t)dtds.

Under some mild regularity conditions (for example, if fx y(z,y) is continuous),

82FX,Y(xay)

fX,Y(xvy) = 81‘82/

From the joint pdf fx y one can calculate the pdf of, say, X. Indeed,
x —+oo
Fx(z)=P{X <z} = / / f(s,t)dtds

Therefore fx(s) = jj;o f(s,t)dt. The pdf of X is called marginal to emphasize that it comes from a joint
pdf of X and Y.

If X and Y have a joint pdf, then we can define a conditional pdf of Y given X = z (for = such that
Ix(x) > 0): fyx(ylz) = fx,y(z,y)/fx(z). Conditional probability is a full characterization of how Y is
distributed for any given given X = x. The probability that ¥ € A for some set A given that X = x can
be calculated as P{Y € A|X =z} = [, fy|x(y|z)dy. In a similar manner we can calculate the conditional
expectation of Y given X = z: E[Y|X =z] = _JF;C yfy|x (ylz)dy. As an exercise, think how we can define
the conditional distribution of Y given X = z if X and Y are discrete random variables.

One extremely useful property of a conditional expectation is the law of iterated expectations: for any
random variables X and Y,

E[E]Y|X =z]] = E[Y].

2.2 Independence

Random variables X and Y are said to be independent if fy|x (y|x) = fy(y) for all x € R, i.e. if the marginal
pdf of Y equals conditional pdf Y given X = x for all 2 € R. Note that fy|x(y[z) = fy(y) if and only if
fxy(zy) = fx(@)fy(y). I X and Y are independent, then g(X) and f(Y) are also independent for any
functions g : R — R and f: R — R. In addition, if X and Y are independent, then E[XY] = E[X]|E[Y].



Indeed,

—+o0 —+oo
E[XY] / / ryfxy(z,y)dzdy

+oo  ptoo
[ [ zy fx (z) fy (y)dzdy

/ " b (@) / "y dy

— 00 — 00

E[X]E[Y]

2.3 Covariance

For any two random variables X and Y we can define covariance as
cov(X,Y) = E[(X — E[X])(Y — E[Y])].
As an exercise, check that cov(X,Y) = E[XY] — E[X]E[Y].
Covariances have several useful properties:
1. cov(X,Y) =0 whenever X and Y are independent
2. cov(aX,bY) = abcov(X,Y) for any random variables X and Y and any constants a and b
3. cov(X 4+ a,Y) = cov(X,Y) for any random variables X and Y and any constant a
4. cov(X,Y) = cov(Y, X) for any random variables X and Y
5. cov(X,Y)| < /V(X)V(Y) for any random variables X and Y’
6. V(X,Y)=V(X)+V(Y)+ 2cov(X,Y) for any random variables X and YV’
7. V(XL X)) =Y, V(X;) whenever X1, ..., X,, are independent

To prove property 5, consider random variable X — aY with a = cov(X,Y)/V(X). On the one hand, its
variance V(X —aY’) > 0. On the other hand,

V(X —aY) = V(X)—2acov(X,Y) +a®V(Y)
= V(X)—2(cov(X,Y))?/V(Y) + (cov(X,Y)?/V(Y)

Thus, the last expression is nonnegative as well. Multiplying it by V(Y") yields the result.

The correlation of two random variables X and Y is defined by corr(X,Y) = cov(X,Y)//V(X)V(Y).
By property 5 as before, |corr(X,Y)| < 1. If |corr(X,Y)| = 1, then X and Y are linearly dependent, i.e.
there exist constants a and b such that X = a + bY.



3 Normal Random Variables

Let us begin with the definition of a multivariate normal distribution. Let ¥ be a positive definite n x n
matrix. Remember that the n x n matrix ¥ is positive definite if a”%a > 0 for any non-zero n x 1 vector a.
Here superindex T denotes transposition. Let p be n x 1 vector. Then X ~ N(u,X) if X is continuous and

its pdf is given by
exp(—(z — p)"S (2 — p)/2)

fx(e) = (27)7/2/det (%)

for any n x 1 vector .

A normal distribution has several useful properties:

1. if X ~ N(u,X), then ¥;; = cov(X;, X;) for any i,j = 1,...,n where X = (X1, ..., X,,)T

2. if X ~ N(u, %), then u; = E[X;] forany i =1,...,n

3. if X ~ N(u,X), then any subset of components of X is normal as well. In particular, X; ~ N (u;, X4;)

4. if X and Y are uncorrelated normal random variables, then X and Y are independent. As an exercise,

check this statement
5 if X ~ N(ux,0%),Y ~ N(uy,0%), and X and Y are independent, then X +Y ~ N(ux+py,0%+0%)

6. Any linear combination of normals is normal. That is, if X ~ N(u, %) is an n x 1 dimensional normal
vector, and A is a fixed k& x n full-rank matrix with k¥ < n, then Y = AX is a normal k£ x 1 vector:
Y ~ N(Au, AL AT).

3.1 Conditional distribution

Another useful property of a normal distribution is that its conditional distribution is normal as well. If

SR ()

Xo
then X1 [Xy = 2o ~ N(j1,X) with ji = pu1+ 312555 (2o —p2) and ¥ = X1 — %1555, Yoy, If X and X, are both
random variables (as opposed to random vectors), then E[X1| X2 = z3] = p1 +cov(X1, Xo)(z2 — p2)/V(X2).

011 012
3=
012 022

be the covariance matrix of 2 x 1 normal random vector X = (X1, X2)7 with mean p = (u1, u2)”. Note that

Y11 X
Yo1 Yoo

Let us prove the last statement. Let

Y12 = Y91 = 019 since cov(X1, X2) = cov(X1, Xo). From linear algebra, we know that det(X) = 011090 — 035

and
_1 1

det(X)

—012 011

022 —012 1



Thus the pdf of X is

exp{—[(z1 — )02 + (v — p2)’011 — 2(x1 — ) (w2 — p2)o12]/(2det(2)}

fx(z1,22) = 27#@ )

and the pdf of X5 is

exp{—(z2 — M2)2/(2022)} .

sz (‘TQ) = \/m
Note that ) )
o11 7L:U11022—(011022—012) _ D)
det(Z) 0922 det(Z)UQQ det(Z)Ugg'

Therefore the conditional pdf of X, given X5 = xo, is

exp{—[(z1 — p1)092 + (w2 — p2)’0%y /092 — 2(x1 — p1) (w2 — p2)o12) /(2 det(%))}
exp{—[(z1 — ) + (2 — p2)075 /055 — 2(z1 — pu1) (w2 — pi2) 12/ 020]/(2det(X) /o20) }
V2rmy/det(3) /092
exp{—[z1 — p1 — (z2 — p2)o12/092)*/(2det(Z) /022)}
exp{—(z1 — 1)*/(25)}
V2rVe ’

where i = p1 + (x3 — p2)o12/022 and & = det(X)/oa2. Note, that the last expression equals the pdf of a

normal random variable with mean i and variance ¢ yields the result.
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