
Lecture 11
Large Sample Tests.

1 Likelihood Ratio Test
Let X1, ..., Xn be a random sample from a distribution with pdf f(x|θ) where θ is some one dimensional
(unknown) parameter. Suppose we want to test the null hypothesis, H0, that θ = θ0 against the alternative
hypothesis, Ha, that θ = θ0. Assume the same regularity conditions hold as in the MLE theory. Then
likelihood ratio test (LRT) statistic is

λ(x) =
L(θ0|x)

L(θ̂ML|x)

where x = (X1, ..., Xn) and θ̂ML is the ML estimator. Then we have

Theorem 1. Under the null hypothesis,−2 log λ(x) ⇒ χ2
1.

Proof. Denote ln(θ) = logL(θ|x). By the Taylor theorem, for some θ? between θ0 and θ̂ML,

−2 log λ(x) = −2((ln(θ0)− ln(θ̂ML))

∂l (θ̂ ) 1 ∂2l (θ?)
= −2 n ML (θ ˆ

0
θ

− θML) + n (θ ˆ
∂ 2 0

∂θ2
− θML)2

)

∂2l
= − n(θ?)

(θ ˆ
0 θML)2

∂θ2
−

since ∂ln(θ̂ML)/∂θ = 0 by FOC.
By the MLE theory, θ̂ ?

ML →p θ0. So, θ →p θ0. Note that ln depends on n. So it does not follow from
the Continuous mapping theorem that ∂2ln(θ?)/∂θ2 →p ∂2ln(θ0)/∂θ2. However, as will be shown in 14.385,
by the uniform law of large numbers,

1 ∂2ln(θ?) 1 n
∂2 log f(X− =

n ∂θ2
− i|θ)

n

∑
∂θ2

i=1

→p I(θ0)

where I(θ) denotes the information matrix, i.e. I(θ) = −E[∂2 log f(Xi|θ)/∂θ2]. By the Slutsky theorem,

1 ∂2l (− n θ?)
nI(θ0) ∂θ2

→p 1
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In addition, from the MLE theory,

√
n(θ̂ML − θ0) ⇒ N(0, I−1(θ0)).

So, by Continuous mapping theorem,

I(θ )n(θ̂ − θ )2 ⇒ χ2
0 ML 0 1.

By the Slutsky theorem,

1 ∂2l ?

−2 log ( ) = − n(θ )
λ x I(θ n(θ ˆ 2 2

( ) 0) 0 θ
nI θ0 ∂

− ML)
2

⇒ χ
θ 1.

It follows from this theorem that the large sample LR test of level α rejects the null hypothesis if and
only if −2 log λ(x) > χ2

1(1 − α), where χ2
1(1 − α) denotes 1 − α-quantile of χ2

1. Note that in �nal samples,
the size of this test may be greater than α but as the sample size increases, the size will converge to α.

In general, let θ be a multidimensional parameter. Suppose that the null hypothesis Θ0 can be written in
the form {θ ∈ Θ : g1(θ) = 0, ..., gp(θ) = 0} where g1, ..., gp denote some nonlinear functions of θ. Equations
g1(θ) = 0, ..., gp(θ) = 0 are called restrictions of the model. Assume that restrictions are jointly independent
in the sense that we cannot drop any subset of restrictions without changing set Θ0. Then, under some
regularity conditions (mainly smoothness of g1, ..., gp), −2 log λ(x) ⇒ χ2

p under the null hypothesis. So, large
sample LR test of level α rejects the null hypothesis if and only if −2 log λ(x) ⇒ χ2

p(1−α). Often, we denote
LR = −2 log λ(x). LR is called the LR-statistic.

Example Let X1, ..., Xn be a random sample from a Poisson(λ) distribution. Recall that the pmd of the
Poisson(λ) distribution is f(x|λ) = λxe−λ/x! for x = 0, 1, 2, .... Suppose we want to test the null hypothesis,
H0, that λ = λ0 = 6 against the alternative hypothesis, Ha, that λ = λ0. Suppose we observe Xn = 5 while
our sample size n = 100. Let us derive the result of the large sample LR test. Likelihood function is

n

λ X=1 ie−nλ

L(λ| =
i

x)

∑

∏n
i=1 Xi!

where x = (X1, ..., Xn). The log-likelihood is

n n

ln(λ) =
∑

Xi log λ− nλ− log
∏

Xi!
i=1 i=1

So, the ML estimator λ̂ML solves
∑n

X ˆ
i/λML

i=1

− n = 0

or, equivalently,
λ̂ML = Xn
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So, LRT statistic is
λ(x) = (λ0/λ̂ML)

∑n
i=1 XI e−n(λ0−λ̂ML).

Then

LR = −2 log λ(x)

= −2

(∑n

X ˆ
i log(λ λ ˆ

0/ ML)− n(λ0 − λML)
i=1

)

= −2n(Xn log(λ0/Xn)− λ0 + Xn)

= −200(5 log(6/5)− 6 + 5)

≈ 17.6,

while χ2
1(0.95) = 3.98. So large sample LR test rejects the null hypothesis.

2 Large Sample Tests: Wald
Once we know the asymptotic distribution of some statistic, say, δ(X1, ..., Xn), we can construct a large
sample test based on this asymptotic distribution. Suppose we can show that

√
n(δ(X1, ..., Xn)− τ(θ)) ⇒ N(0, σ2)

where θ is our parameter and τ(·) some function. Suppose we have a consistent estimator σ̂2 of σ2, i.e.
σ̂2 →p σ2. By the Slutsky theorem,

√
n(δ(X1, ..., Xn)− τ(θ))/σ̂ ⇒ N(0, 1)

Suppose we want to test the null hypothesis, H0, that θ = θ0 against some alternative hypothesis. Under
the null hypothesis, √

n(δ(X1, ..., Xn)− τ(θ0))/σ̂ ⇒ N(0, 1).

So, one test of level α will be to reject the null hypothesis if δ(X1, ..., Xn) ∈/ (τ(θ0) − zα/2σ̂/
√

n, τ(θ0) +

z1−α/2σ̂/
√

n). Another test of level α will be to reject the null hypothesis if δ(X1, ..., Xn) > τ(θ0) +

z1−ασ̂/
√

n). The choise of function δ(·) and critical region for the test should be done based on power
considerations.

As an example, let θ̂ML be the ML estimator of parameter θ ∈ R. We know that, under some regularity
conditions, √

n(θ̂ 1
ML − θ) ⇒ N(0, I− (θ))

Under some regularity conditions, I−1(θ) may be consistently estimated by I ˆ−1(θML). Suppose that our
null hypothesis is that θ = θ0. Then, under the null hypothesis,

√
nI1/2(θ̂ML)(θ̂ML − θ0) ⇒ N(0, 1)
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If the alternative hypothesis is that θ > θ0, then an appropritate test will be to reject the null hypothesis if
θ̂ 1/2 ˆ

ML > θ0 + z1 αI− (θML)/
√

n. If the alternative hypothesis is that θ = θ− 0, then an appropriate test will
be to reject the null hypothesis if θ̂ML ∈/ (θ0 − zα/2I ˆ ˆ−1/2(θML)/

√
n, θ0 + z 2

α/2I
−1/

1 (θML)/
√

n)− .
In this section we continue working within the framework of MLE example above. By continuous mapping

theorem with g(x) = x2, under the null hypothesis

W = nI(θ̂ ˆ 2 2
ML)(θML − θ0) ⇒ χ1

W is called the Wald statistic. Recall that LR-statistic is given by

1 ∂2
2

(
ln(θ?)

LR = n(θ̂ML − θ0) −
n ∂θ2

)

where θ? is between θ0 and θ̂ML. As in the case of Wald statistic, under the null hypothesis,

LR ⇒ χ2
1

Moreover,
W − LR →p 0

since I(θ̂ML) →p I(θ0) and −(1/n)∂2ln(θ?)/∂θ2 →p I(θ0). Thus, LR and Wald statistics are asymptotically
equivalent. They are di�erent in �nite samples though. In particalur, it is known that W ≥ LR in the case
of normal likelihood.

An advantage of the Wald statistic in comparison with the LR statistic is that it only includes calculations
based on the unrestricted estimator θ̂ML. On the other hand, in order to calculate the Wald statistic, we
have to estimate the information matrix.

Example (cont.) Let us calculate the Wald statistic in our example with a random sample from the
Poisson(λ) distribution. The log-likelihood is

n

ln(λ) =
∑ n

Xi log λ− nλ− log
∏

Xi!
i=1 i=1

So,
∑n

∂ln(λ)/∂λ = Xi/λ
i=1

− n

and
n

∂2ln(λ)/∂λ2 = −
∑

Xi/λ2.
i=1

Thus,
I(λ) = −E

[
1 ∂2ln(λ)
n ∂λ2

]
1

= .
λ
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So, theWald statistic is
W = n(λ̂− λ0)2/λ̂ = 100 · (5− 6)2 · (1/5) = 20.

So, the test based on the Wald statistic rejects the null hypothesis with an even smaller p-value than the
test based on the LR statistic.

3 Score Test
Recall that the score is de�ned by

∂ log n
∂l ∂ log f(X θ)

S(θ) = n (
Ln

θ (θ
∂θ

|X) =
∂θ

| ) =
∑

i
X

|
.

∂θ
i=1

By the �rst order condition for the ML estimator, S(θ̂ML) = 0. By the �rst information equality,

n

E[S(θ0)] =
∑ [

∂ log f(Xi
E

|θ0)
]

= 0.
∂θ

i=1

By de�nition of Fisher information,

E

[(
∂ log f(Xi|θ)

)2
]

= I(θ0).
∂θ

So, by the Central limit theorem, under the null hypothesis

1 S(θ√ 0)
n

√ N(0, 1).
I(θ0)

⇒

By the continuous mapping theorem,

LM = S(θ0)2/(nI(θ0)) ⇒ N(0, 1).

The LM is called Lagrange Multiplier (LM) statistic. Let us show that the LM statistic will take large
values if the null hypothesis is violated. Consider the optimization problem logL(θ|x) → max s.t. θ = θ0.
The lagrangian is

H = logL(θ|x)− λ(θ − θ0).

The FOC is
S(θ0) = λ.

We know that θ̂ML maximizes logL(θ|x) and, in large samples, θ̂ML will be close to the true parameter
value θ with large probability. If the true value of parameter θ is far from θ ˆ

0, then θML will be far from θ0.
So, if θ0 maximizes H, λ will be large. As a result, S(θ0) and the LM will both be large. Thus, we can base
our test on the LM statistic.
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If the null hypothesis is composite, we can substitute θ̂0 for θ θ̂0 where 0 denotes the restricted (under the
null) estimator of θ0.

Let us show that LM − LR →p 0. By the Taylor theorem,

ˆ ∂2l
S(θ0) = S(θ0)− S(θML) = n (θ?)(θ ˆ

0 − θML),
∂θ2

where θ? is between θ0 and θ̂ML. As before, −(1/n)∂2l (θ?)/∂θ2
n →p I(θ0). By the Slutsky theorem,

(
1 ∂2ln

LM − LR = LR − (θ?)− I(θ0)
n ∂θ2

)
→p 0

Thus, we have shown that LR, Wald, and LM statistics are all asymptotically equivalent under the null
hypothesis. However, they di�er in �nite samples. For example, in the case of normal likelihood, we have
LM ≤ LR ≤ W .

An advantage of the LM statistic is that it only includes calculations based on the restricted estimator
θ0. On the other hand, in order to �nd the LM statistic, we have to estimate Fisher information.

Example (cont.) Let us calculate the LM statistic in our example with a random sample from Poisson(λ)

distribution. We have
n

S(λ0) =
∑

Xi/λ0 − n = 500/6− 100 =
i=1

−100/6

and I(λ0) = 1/λ0 = 1/6. So,

)2
S(λ0)2 1

(
100 100

LM = =
nI(λ0) 100

·
6

· 6 =
6
≈ 17

4 Generalizations and Summary
Let x = (X1, ..., Xn) be a random sample from distribution f(X|θ) with θ ∈ Θ. Suppose we want to test
the null hypothesis, H0, that θ ∈ Θ0 against the alternative hypothesis, H θ̂a, that θ ∈/ Θ0. Let 0 be a
restricted estimator, i.e. θ̂0 solves maxθ Θ0 L(θ|x)∈ , and θ̂ML an unrestricted (ML) estimator, i.e. θ̂ML solves
maxθ∈Θ L(θ|x). Then, under the null hypothesis,

LR = 2(l (θ̂ )− l (θ̂ )) ⇒ χ2
n ML n 0 p

W = n(θ̂ML − θ0)I(θ̂ML)(θ̂ML − θ0) ⇒ χ2
p

LM = (1/n)S(θ̂0)I−1(θ̂0)S(θ̂0) ⇒ χ2
p

and all of them are asymptotically equivalent to each other.
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