
Lecture 12
Con�dence Sets

1 Introduction
So far, we have been considering point estimation. In this lecture, we will study interval estimation. Let
X denote our data. Let θ ∈ R be our parameter of interest. Our task is to construct a data-dependent
interval [l(X), r(X)] so that it contains θ with large probability. One possibility is to set l(X) = −∞ and
r(X) = +∞. Such an interval will contain θ with probabity 1. Of course, the problem with this interval is
that it is too long. So, we want to construct an interval as short as possible.

More generally, instead of intervals, we can consider con�dence set C(X) ⊂ R such that it contains θ with
large probability and has as small volume as possible. The concept of con�dence sets can be also applied for
any set of possible parameter values Θ, not just for R.

Let us introduce basic concepts related to con�dence sets.

De�nition 1. Coverage probability of the set C(X) ⊂ Θ is the probability (under the assumption that the
true value is θ) that con�dence set C(X) contains θ, i.e. Coverage Probability(θ) = Pθ{θ ∈ C(X)}.

Of course, in practice, we are interested in con�dence sets that contain the true parameter value with
large probability uniformly over the set of possible parameters values.

De�nition 2. Con�dence level is the minimum of coverage probabilities over the set of possible parameter
values, i.e. Con�dence Level = infθ Θ Pθ{θ ∈ C(X)∈ }. We say that the con�dence set C(X) has con�dence
level α if infθ∈Θ Pθ{θ ∈ C(X)} ≥ α.

Let us consider how we can construct con�dence sets.

2 Test Inversion
For each possible parameter value θ0 ∈ Θ, consider the problem of testing the null hypothesis, H0 : θ = θ0

against the alternative, Ha : θ = θ0. Suppose that foe each such hypothesis we have a test of size α. Then
the con�dence set C(X) = {θ0 ∈ Θ : the null hypothesis that θ = θ0 is not rejected} is of the con�dence
level 1− α. Indeed, suppose that the true value of parameter is θ0. Since the test of θ = θ0 against θ = θ0

has level α by construction, Pθ0{the test rejects θ = θ0} ≤ α. So, with probability at least 1−α, θ0 ∈ C(X).
In other words, Pθ0{θ0 ∈ C(X)} ≥ 1− α. The same holds for all θ0 ∈ Θ. So, infθ∈Θ Pθ{θ ∈ C(X)} ≥ 1− α.
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This procedure is called test inversion. One problem with the test inversion is that sometimes a con�dence
set obtained via this procedure will consists of several disjoint intervals which is unattractive from applied
perspective.

Note that if we have a way to construct a con�dence set, we can use it for testing. Indeed, once we have
a con�dence set C(X) of level 1− α, we can form a test of the null hypothesis, H0, that θ = θ0 against the
alternative, Ha, that θ = θ0 by accepting the null hypothesis if and only if θ0 ∈ C(X). This test will have
size α.

Example 1 Let X1, ..., Xn be a random sample from distribution N(µ, 1). Let us use the test inversion to
construct a con�dence set for µ of level 1 − α. Let us consider the problem of testing the null hypothesis,
H0 : µ = µ0 against the alternative, Ha : µ = µ0. Under the null hypothesis, √n(Xn − µ0) ∼ N(0, 1). One
possible test of size α is to accept the null hypothesis if and only if zα/2

√≤ n(Xn − µ0) ≤ z1−α/2. This
test will accept the null hypothesis µ = µ0 if and only if Xn − z1 /

√
n µ X z /

√
n√ √ −α/2 ≤ 0 ≤ n − α/2 . So, the

con�dence set is [Xn − z1 / n,−α/2 Xn − zα/2/ n]. Note that we actually get an interval in this example.

Example 2 Let X1, ..., Xn be a random sample from the distribution N(µ, σ2). Let us use the test inversion
to construct a con�dence set for σ2 of level 1 − α. Consider the problem of testing the null hypothesis,
H0 : σ2 = σ2 2 2 2 2

0 against the alternative, Ha : σ = σ0 . Under the null hypothesis, (n − 1)s /σ0 ∼ χ2(n − 1).
One possible test of size α is to accept the null hypothesis if and only if

χ2
α/2(n− 1) ≤ (n− 1)s2/σ2

0 ≤ χ2
1 α/2(n 1)− −

This test will accept the null hypothesis σ2 = σ2
0 if and only if

(n− 1)s2/χ2
1−α/2(n− 1) ≤ σ2

0 ≤ (n− 1)s2/χ2
α/2(n− 1)

So, the con�dence set is [
(n− 1)s2 (n 1)s2

, 2

−
χ2 n1−α/2( − 1) χα/2(n− 1)

]

In general, if we can �nd a pivotal quantity Q = q(X1, ..., Xn, θ0) such that distribution of Q under the
null hypothesis θ = θ0 does not depend on the choice of θ0, then we can use Q for testing and con�dence
set construction. Indeed, since distribution of Q is independent of the true parameter value, we can �nd
numbers a and b such that Pθ0{a ≤ Q ≤ b} = 1 − α for all θ0 ∈ Θ. Then one possible test is to accept the
null hypothesis that θ = θ0 if and only if a ≤ q(X1, ..., Xn, θ0) ≤ b. The con�dence set will consists of all
parameter values θ0 which are accepted.

3 Pratt's Theorem
Informally, the theorem states that if we use a uniformly most powerful test (UMP) for the con�dence set
construction, the expected length of the con�dence set will be the shortest among all con�dence sets of a
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given level.

Theorem 3. Let X ∼ f(x|θ) be our data. Let C(X) be our con�dence set for θ. Then, under some regularity
conditions, for any θ0,

Eθ0 [length of C(X)] =
∫

Pθ0{θ ∈ C(X)}dθ

Moreover� if C(X) is constructed by inverting a UMP test of size α, then C(X) has the shortest expected
length among all con�dence sets of level 1− α for any θ0.

Proof. The �rst result follows from

Eθ0 [length of C(X)] = Eθ0 [
∫

I{θ ∈ C(X)
θ

}dθ]

=
∫

x

∫
I

θ

{θ ∈ C(X)}dθf(x|θ0)dx

=
∫ ∫

I{θ ∈ C(X)}f(x|θ0)dxdθ
θ x

=
∫

Pθ0{θ ∈ C(X)}dθ

Note that
∫

Pθ0{θ ∈ C(X)}dθ =
∫

Pθθ=θ 00
{θ ∈ C(X)}dθ and, for any θ = θ0, Pθ0{θ ∈ C(X)} equals 1

minus power of the test based on con�dence set C(X). So, if C̃(X) denotes the con�dence set constructed
by inverting a UMP test,

Pθ0{θ ∈ C(X)} ≥ Pθ0{θ ∈ C̃(X)}

and ∫
Pθ0{θ ∈ C(X)}dθ ≥

∫
Pθ0{θ ˜∈ C(X)}dθ

Combining this inequality with the �rst result yields the second result of the theorem.

Example 3 Let X1, ..., Xn be a random sample from distribution N(µ, σ2). We have already seen that
the UMP test of the null hypothesis, H0, that√ µ = µ0 against the alternative, Ha, that µ = µ0 accepts the
null hypothesis if and only if |(Xn − µ)/ s2/n| ≤ t1 (−α/2 n − 1). So, the con�dence interval with shortest
expected length is [

s s
Xn − √ t1

n
−α/2, Xn + √ t1 α/2

n
−

]

4 Asymptotic Theory for Interval Construction
Let X1, ..., Xn be a random sample from distribution f(x|θ) with θ ∈ Θ. Under some regularity conditions,

√
n(θ̂ML − θ) ⇒ N(0, I−1(θ))

For any function h : Θ → R, under some regularity conditions, by delta-method,

√
n(h(θ̂ML)− h(θ)) ⇒ N(0, (h′(θ))2I−1(θ))
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We can consistently estimate (h′(θ))2I−1(θ) by n(h′(θ̂ML))2(−∂2ln(θ̂ML)/∂θ2)−1. Denote

V̂ (h(θ̂ )) = (h′(θ̂ )2(−∂2l (θ̂ )/∂θ2 1
ML ML n ML )−

By the Slutsky theorem,
h(θ̂√ ML)− h(θ)

ˆ ˆ
⇒ N(0, 1)

V (h(θML))

So, we can construct a con�dence interval for h(θ) as
[
h(θ̂ML) + z ˆ ˆ ˆ ˆ ˆ

α/2

√
V (h(θML)), h(θML) + z1−α/2

√
V (h(θML))

]

Note that this con�dence set is essentially constructed based on the Wald statistic.

Example 4 Let X1, ..., Xn be a random sample from distribution Bernoulli(p). Suppose we want to
construct a con�dence set for h(p) = p/(1− p). Denote p̂ = Xn. Then

√
n(p̂− p) ⇒ N(0, p(1− p))

In addition,
(1 p) + p 1

h′(p) =
−

=
(1− p)2 (1− p)2

By delta-method, √
n(h(p̂)− h(p)) ⇒ N(0, p/(1− p)3)

So, V̂ (h(p̂)) = p/̂((1− p̂)3n). Thus, a con�dence interval for p/(1− p) is
[

p̂ p̂ p̂ p̂
+ z

1− ˆ α/2

√
, + z .

p (1− p̂)3n 1− 1−α/2
p̂

√

(1− p̂)3n

]

4.1 Con�dence Sets Based on LM and LR Tests
In addition to the Wald statistic, we can invert tests based on the LM and the LR statistics as well. However,
these con�dence sets are usually more involved.

Let X1, ..., Xn be a random sample from the distribution Bernoulli(p). Then the joint log-likelihood is

ln = log
(
p

∑
Xi(1− p)n−∑

Xi

)
=

∑
Xi log p + (n−

∑
Xi) log(1− p)

So,
∂ln =
∂p

∑
Xi n−
p

−
∑

Xi

1− p

and
1

I(p) =
p(1 p)−
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Thus,

LM =

(∑ 2
Xi/p√− (n− Xi)/(1− p)

n/(p(1

∑

− p))

)

=

(
(1− p)

∑ 2
Xi − (n−∑

Xi)p
np(1− p)

)

=

( ∑ 2

√ Xi

√

− np

np(1− p)

)

We know that LM ⇒ χ2
1. So, the con�dence set based on inverting the LM test is

{
p ∈ (0, 1) :

∣∣∣
∑

∣ Xi − np

∣√ (1
≤ z− )

∣∣∣∣∣ 1 α/
np p

− 2

}

Note that it is the solution to a quadratic inequality.
As for the LR test,

lur
n − lrn =

∑
Xi log(p/pˆ 0) + (n−

∑
Xi) log((1− p̂)/((1− p0))

So, the con�dence set based on inverting the LR test is
{

p ∈ (0, 1) : 2
(∑

Xi log(p/pˆ ) + (n−
∑

X 2
i) log((1− p̂)/((1− p))

)
≤ χ1−α(1)

}

It is the solution to a nonlinear inequality.
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