
Lecture 5
Point estimators.

1 Estimators. Properties of estimators.
An estimator is a function of the data. If we have a parametric family with parameter θ, then an estimator
of θ is usually denoted by θ̂.

Example For example, if X1, ..., Xn is a random sample from some distribution with mean µ and variance
σ2, then sample average µ̂ = Xn is an estimator of the population mean, and sample variance σ̂2 = s2 =∑n

i=1(Xi −Xn)2/(n− 1) is an estimator of the population variance.

1.1 Finite sample properties.
1.1.1 Unbiasness

Let X be our data. Let θ̂ = T (X) be an estimator where T is some function.
We say that θ̂ is unbiased for θ if Eθ[T (X)] = θ for all possible values of θ where Eθ denotes the

expectation when θ is the true parameter value.
Thus, the concept of unbiasness means that we are on average right. The bias of θ̂ is de�ned by Bias(θ̂) =

Eθ[θ̂] − θ. Thus, θ̂ is unbiased if and only if its bias equals 0. For example, if X is a random sample
X1, ..., Xn from some distribution with mean µ and variance σ2, then, as we have already seen, E[µ̂] = µ

and E[s2] = σ2. Thus, sample average and sample variance are unbiased estimators of population mean and
population variance correspondingly.

There are some cases when unbiased estimators do not exist. As an example, let X1, ..., Xn be a random
sample from a Bernoulli(p) distribution. Suppose that our parameter of interest θ = 1/p. Let θ̂ = T (X)

be some estimator. Then E[θ̂] =
∑

(x ,...,x ) 0,1 n T (x1, ..., xn1 n
)P{(X1, ..., Xn) = (x1, ...xn)}. We know that∈{ }

for any (x1, ..., xn) ∈ {0, 1}n, P{(X1, ..., Xn) = (x1, ...xn)} = p xi(1 − p) (1−xi) which is a polynomial of
degree n p

∑ ∑

in . Therefore, E[θ̂] is a polynomial of degree at most n in p. However, 1/p is not a polynomial
at all. Hence, there are no unbiased estimators in this case.

In some other cases, unbiased estimators may be quite weird. As an example, suppose there is an in�nite
number of independent trials, X1, ..., Xn, ... from Bernoulli(p) distribution. Suppose that Xi = 0 means
failure in the i-th trial while Xi = 1 means success. Suppose that we do not observe X1, ..., Xn, .... Instead,
we observe only the number of failures before the �rst success. Denote the number of failures by X. Then
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P{X = 0} = p, P{X = 1} = (1 − p)p, P{X = 2} = (1 − p)2p, etc. Suppose that our parameter of interest
θ = p. Let ˆ = ( ) be some estimator. Then [ ]̂ = ∞ ( )(1 )i . If ˆ is unbiased for , then∑ θ T X E θ i=0 T i − p p θ θ
∞
i=0 T (i)(1− p)ip = p. Equivalently,

∑

and T (i) = 0 for all i ≥ 1. Does it seem

∑∞
i=0 T (i)(1− p)i = 1. Thus, the only unbiased estimator is T (0) = 1

reasonable?

1.1.2 E�ciency: MSE

Another of the concepts that evaluates performance of estimators is the MSE (Mean Squared Error). By
de�nition, MSE(θ̂) = Eθ[(θ̂ − θ)2]. The theorem below gives a useful decomposition for MSE:

Theorem 1. MSE(θ̂) = Bias2(θ̂) + V (θ̂).

Proof.

E[(θ̂ θ)2] = E[(θ̂ E[θ̂− ] ˆ− + E[θ]− θ)2]

= E[(θ̂ − E[θ̂])2 + (E[θ̂]− θ)2 + 2(θ̂ − E[θ̂])(E[θ̂]− θ)]

= V (θ̂) + Bias(θ̂) + 2E[θ̂ − E[θ̂]](E[θ̂]− θ)

= V (θ̂) + Bias(θ̂).

Estimators with smaller MSE are considered to be better, or more e�cient. Quite often there is a trade-
o� between bias of the estimator and its variance. Thus, we may prefer a slightly biased estimator to an
unbiased one if the former has much smaller variance in comparison to the latter one.

Example Let X1, ..., Xn be a random sample from N(µ, σ2). Let σ̂2
1 = 2 = n 2

∑ s i=1(Xi−Xn) /(n− 1) and
σ̂2

2 = n
i=1(X

2
i−Xn) /n be two estimators of σ2. We know that E[σ̂2

1 ] = σ2. So

∑

E[σ̂2
2 ] = ((n−1)/n)E[σ̂2

1 ] =

((n− 1)/n)σ2, and Bias(σ̂2
2) = σ2/n. We also know that (n− 1)σ̂2

1/σ2 ∼ χ2(n− 1). What is V (χ2(n− 1))?
Let ξ1, ..., ξn−1 be a random sample from N(0, 1). Then ξ = ξ2

1 + ... + ξ2 2
n χ−1 ∼ (n − 1). By linearity of

expectation, E[ξ] = (n− 1). By independence,

E[ξ2] = E[(ξ2
1 + ... + ξ2 2

n 1) ]−
n−1

=
∑

E[ξ4 2
i ] + 2 E[ξ2

i ξj ]
i=1 1≤i<j

∑

≤n−1

= 3(n− 1) + 2
∑

E[ξ2
i ]E[ξ2

j ]
1≤i<j≤n−1

= 3(n− 1) + (n− 1)(n− 2)

= (n− 1)(n + 1),

since E[ξ4
i ] = 3. So

V (ξ) = E[ξ2]− (E[ξ])2 = (n− 1)(n + 1)− (n− 1)2 = 2(n− 1).
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Thus, V (σ̂2
1) = V (σ2ξ/(n − 1)) = 2σ4/(n − 1) and V (σ̂2

2) = ((n − 1)/n)2V (σ̂2
1) = 2σ4(n − 1)/n2. Finally,

MSE(σ̂2
1) = 2σ4/(n− 1) and

MSE(σ̂2
2) = σ4/n2 + 2σ4(n− 1)/n2 = (2n− 1)σ2/n2.

So, MSE(σ̂2
1) < MSE(σ̂2

2) if and only if 2/(n− 1) < (2n− 1)/n2, which is equivalent to 3n < 1. So, for any
n ≥ 1, MSE(σ̂2

1) > MSE(σ̂2
2) in spite of the fact that σ̂2

1 is unbiased.

1.2 Asymptotic properties.
1.2.1 Consistency

Imagine a thought experiment in which the number of observations n increases without bound, i.e. n →∞.
Suppose that for each n, we have an estimator θ̂n.

We say that θ̂n is consistent for θ if θ̂n →p θ.

Example Let X1, ..., Xn be a random sample from some distribution with mean µ and variance σ2. Let
µ̂ = µ̂n = Xn be our estimator of n

µ and s2 = s2
n =

∑
i=1(Xi −Xn)2/(n− 1) be our estimator of σ2. By the

Law of large numbers, we know that µ̂ →p µ as n →∞. In addition,

n

s2 =
∑

(Xi −X 2
n) /(n

i=1

− 1)

n

=
∑

(Xi − µ)2/(n
i=1

− 1)− (n/(n− 1))(Xn − µ)2

∑n

= (n/(n− 1))( (X X 2
i − µ)2/n)− (n/(n− 1))( n µ

i

− )
=1

By the Law of large numbers,
∑n

i=1(
n

Xi − µ)2/n →p E[(Xi − µ)2 = σ2 and Xn − µ = i=1(Xi − µ)/n →p

E[Xi − µ] = 0. By the Continuous mapping theorem, (Xn − µ)2 →p 0. In addition, n/

∑

(n 1) p 1. So, by
the Slutsky theorem, s2 → σ2. So µ̂ and s2 are consistent for µ and σ2

− →
p correspondingly.

1.2.2 Asymptotic Normality

We say that θ̂ is asymptotically normal if there are sequences {an}∞n=1 and {rn}∞n=1 and constant σ2 such
that rn(θ̂ − an) ⇒ N(0, σ2). Then rn is called the rate of convergence, an - the asymptotic mean, and σ2 -
the asymptotic variance. In many cases, one can choose an = θ and rn =

√
n. We will use the concept of

asymptotic normality for con�dence set construction later on. For now, let us consider an example.

Example Let X1, ..., Xn be a random sample from some distribution with mean µ and variance σ2. Let µ̂

and s2 be the sample mean and the sample variance correspondingly. Then, by the Central limit theorem,
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√
n(µ̂− µ) ⇒ N(0, σ2). As for s2,

√ n

n(s2 − σ2) = (n/(n− 1))[
∑

((X 2 2
i

√− µ) − σ )/ n− (
√

n(Xn − µ)/n1/4)2] + (
√

n/(n− 1))σ2

i=1

By the Central limit theorem,
∑n

i=1((X
2 2 2 2 2

i−µ) σ )/
√− n ⇒ N(0, τ ) with τ = E[((Xi−µ) −σ2)2]. Note that

τ2 = µ −2σ2E[(X −µ)2]+σ4 = µ −σ4 4
4 i 4 with µ4 = E[(Xi−µ) ]. By Slutsky theorem, √n(Xn−µ)/n1/4

2 2 2 2

→p 0.
In addition, (

√
n/(n− 1))σ →p 0. So, by the Slutsky theorem again, √n(s − σ ) ⇒ N(0, τ ).

2 Common methods for constructing an estimator

2.1 Method of Analogy (plug-in)
A method of analogy is another name for the plug-in estimator we have seen before. If we are interested in
estimating θ = θ(F ) where F denotes the population distribution, we can estimate θ by θ̂ = θ(F̂ ) where F̂

is some estimator of F .

2.2 Method of Moments
Let X1, ..., Xn be a random sample from some distribution. Suppose that the k-dimensional parameter
of interest θ satis�es the system of equations E[Xi] = m1(θ), E[X2

i ] = m2(θ),..., E[Xk
i ] = mk(θ) where

m1, ..., mk are some known functions. Then the method of moments estimator θ̂MM of θ is the solution of the
above system of equations when we substitute

∑n
i=1 Xi/n,

∑n
i=1 X2 n

i /n,..., i=1 Xk
i /n for E[Xi], E[X2

i ],...,
E[Xk

i ] correspondingly. In other words θ̂MM solves the following system of

∑

equations:
∑n

i=1 Xi/n = m1( )̂,

unique.

∑ θ
n 2
i=1 Xi /n = n

m2(θ̂),...,
∑

=1 Xk
i /n = mk(θ̂i ). It is implicitly assumed here that the solution exists and is

Example Let X1, ..., Xn be a random sample from N(µ, σ2). Then∑ ∑ E[X 2
i] = µ and E[Xi ] = µ2 +σ2. Thus,

µ̂MM = n n n n
i=1 Xi/n and µ̂2 2

MM + σ̂MM = 2
i X2
=1 i /n. So σ̂2 2

MM =
∑

i=1 Xi /n− (
∑

i=1 Xi/n) .

Example Let X1, ..., Xn be a random sample from Binomial(k, p). In other words, Xi is a discrete random
variable and P{Xi = j} = k!/(j!(k− j)!)pj(1− p)k−j . Then E[X ] = kp and E[X2 2

i i ] = kp(1− p) + k p2. The
method of moment estimator (k̂MM , p̂

n
M ) solves i=1 Xi/n = k̂M MM p̂MM and n

i=1 X2
i /n = k̂MM p̂MM (1−

p̂MM ) + k̂2
MM p̂2

MM . We can solve this system to �nd

∑

k̂MM and p̂MM . Is k̂MM

∑

always an integer?
The idea of the Method of moments is a very old one. There is a generalization of it which allows for more

moments than the dimensionality of the parameter. It is called GMM (Generalized Method of Moments)
and will be studied extensively later on, as the main work horse of Econometrics.

2.3 Maximum Likelihood Estimator
Let f(x|θ) with θ ∈ Θ be some parametric family. Let X1, ..., Xn be a random sample from f(x|θ). The
joint pdf of X1, ..., Xn is f(x1, ..., xn|θ) =

∏n
i=1 f(xi|θ). Let x1, ..., xn denote the realization of X1, ..., Xn.

4



By de�nition, the maximum likelihood estimator θ̂ML of θ is the value that maximizes f(x1, ..., xn|θ), i.e.
θ̂ML = arg maxθ Θ f(x1, ..., xn|θ)∈ . Thus, maximum likelihood estimator is a parameter value such that it
gives the greatest probability of observing x1, ...xn. As we said before, f(x1, ..., xn|θ) as a function of θ for
�xed values x1, ..., xn is called the likelihood function. It is usually denoted by L(θ|x1, ..., xn). Thus, the
maximum likelihood estimator maximizes the likelihood function, which explains the name of this estimator.
Since log(x) is increasing in x, it is easy to see that θ̂ML also maximizes l(θ|x1, ..., xn) = logL(θ|x1, ..., xn).
Function l(θ|x ˆ

1, ..., xn) is called the log-likelihood. If l(θ|x1, ..., xn) is di�erentiable in θ, then θML satis�es
�rst order condition (FOC): dl(θ̂ n ˆ

ML|x1, ..., xn)/dθ = 0 or, equivalently, i=1 ∂ log f(xi|θML)/∂θ = 0. The
reason we took log of the likelihood function now can be seen: it is easier

∑

to take the derivative of the sum
than the derivative of the product. Function S(θ| n

x1, ...xn) = i=1 ∂ log f(xi|θ)/∂θ is called the score. Thus,
θ̂ML solves the equation S(θ|x1, ...xn) = 0.

∑

Example Let X1, ...Xn be a random sample from N(µ, σ2). Then l(θ|x1) = − log
√

2π − (1/2) log σ2 −
(xi − µ)2/(2σ2) where θ = (µ, σ2). So

n

l(θ|x1, ..., xn) = −n log
√

2π − (n/2) log σ2 −
∑

(xi

i=1

− µ)2/(2σ2)

FOCs are
n

∂l/∂µ =
∑

(xi

i=1

− µ)/σ2 = 0

n

∂l/∂σ2 = −n/(2σ2) +
∑

(x 4
i µ)2/(2σ ) = 0

i=1

−

So µ̂ML = Xn and σ̂2 2
M =

∑n
L i=1(Xi −Xn) /n.

Example As another example, let X1, ..., Xn be a random sample from U [0, θ]. Then f(x1|θ) = 1/θ

if x ∈ [0, θ] and 0 otherwise. So f(x1, ...xn|θ) = 1/θn if 0 ≤ x(1) ≤ x(n) ≤ θ and 0 otherwise. Thus,
L(θ|x1, ...x ) = (1/θn

n )I{θ ≥ x(n)}I θ̂{x(1) ≥ 0}. We conclude that ML = X(n).
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