Lecture 6

Efficient estimators. Rao-Cramer bound.

1 MSE and Sufficiency

Let X = (Xi,..., X,,) be a random sample from distribution fy. Let § = 6(X) be an estimator of 6. Let
T(X) be a sufficient statistic for . As we have seen already, MSE provides one way to compare the quality of
different estimators. In particular, estimators with smaller MSE are said to be more efficient. On the other
hand, once we know T(X), we can discard X. How do these concepts relate to each other? The theorem
below shows that for any estimator 6 = 0(X), there is another estimator which depends on data X only

through T'(X) and is at least as efficient as 0:

Theorem 1 (Rao-Blackwell). In the setting above, define ¢(T) = E[5(X)|T]. Then 6y = ¢(T(X)) is an
estimator for 0 and MSE(6y) < MSE(0). In addition, if 0 is unbiased, then 0y is unbiased as well.

Proof. To show that 6, is an estimator, we have to check that it does not depend on 6. Indeed, since T is
sufficient for 0, the conditional distribution of X given T is independent of . So the conditional distribution
of §(X) given T is independent of # as well. In particular, the conditional expectation E[6(X)|T] does not
depend on 0. Thus, ¢(T(X)) depends only on the data X and 65 is an estimator.

MSE(f) = E[(0 — 0y + 6, — 0)?]

= E[(0 - 0,)*] + 2E[(0 — 02)(02 — 0)] + E[(0 — 0)?]

= E[(é — é2)2] + QE[(é — éz)(ég — 0)] + MSE(éQ)

= E[(6 — 02)*] + MSE(6,),

where in the last line we used
E[(0 - 05)(02— 0)] = E[(6(X) — ¢(T(X))($(T(X)) - 0)]

= E| N(A(T(X)) —0)|T]]
= E[(¢(T(X)) = 0)E[(6(X) — ¢(T(X)))|T]]
= E[(o(T(X)) —0) - (E[6(X)|T] — ¢(T(X)))]
= 0,

since E[6(X)|T] = ¢(T(X)).
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To show the last result, we have

by the law of iterated expectation. [

Example Let X;,..,X, be a random sample from Binomial(p,k), i.e. P{X; = m} = (k!/(m!(k —
m)))p™(1 — p)¥~™ for any integer m > 0. Suppose our parameter of interest is the probability of one
success, i.e. § = P{X; = 1} = kp(1 — p)*~'. One possible estimator is § = >, I(X; = 1)/n. This

estimator is unbiased, i.e. F[f] = 6. Let us find a sufficient statistic. The joint density of the data is

n

[T it — oy (1= p)

i=1
= function(z, ..., xn)pz Ti(] — p)nkfz z;

f(ﬂfl, ,JZn)

Thus, T =Y, X; is sufficient. In fact, it is minimal sufficient.
Using the Rao-Blackwell theorem, we can improve 6 by considering its conditional expectation given 7'

Let ¢ = E[|T] denote this estimator. Then, for any nonnegative integer t,

n

o) = B I(Xi=1)/n} Xi=1]

i=1

= ZP{Xi:1|ZXj:t}/n

= P{X;=1> X;=t}
j=1

P{X, =1, Z;’L:I X; =1t}

P X =t}
P{X1 =1, , X;=t—1}

PO X =1
P{Xy =1}P{3 0, X; =t -1}
P X =t}
kp(L—p) =" (k(n = D)/((t = D(k(n = 1) = (t = )))p' ' (1 = p)*n D=0
(kn)!/ (#(kn — t)D)p*(1 — p)kn—*
k(k(n — D)Y/((t = D'k —1) = (¢ = 1))!)
(kn)!/(t!(kn —t)!)

k(k(n — 1)l(kn —t)!t
(kn)l(kn — k41 —1t)!

where we used the fact that X; is independent of (X, ..., X,,), >.i, X; ~ Binomial(kn,p), and > ., X; ~



Binomial(k(n — 1), p). So our new estimator is

ke(k(n — 1)!(kn — 3700, X)l(is, Xa)
(kn)!{(kn —k+1->"  X;)!

é2 - ¢(X17 ---7Xn) =

By the theorem above, it is unbiased and at least as efficient as 6. The procedure we just applied is sometimes

informally referred to as Rao-Blackwellization.

2 Fisher information

Let f(x]|6) with 8 € © be some parametric family. For given 6 € O, let Suppy = {z : f(x]|0) > 0}. Suppy
is usually called the support of distribution f(z|f). Assume that Suppg does not depend on 6. As before,
I(x,0) = log f(x|0) is called loglikelihood function. Assume that I(x,0) is twice continuously differentiable
in 0 for all x € S. Let X be some random variable with distribution f(z|@). Then

Definition 2. I(6) = Ey[(9l(X,0)/00)?] is called Fisher information.

Fisher information plays an important role in maximum likelihood estimation. The theorem below gives

two information equalities:
Theorem 3. In the setting above, (1) Eg[01(X,0)/00] =0 and (2) I1(0) = —Es[0%1(X,0)/00].

Proof. Since l(z,0) is twice differentiable in 0, f(z|f) is twice differentiable in 6 as well. Differentiating
identity fjof f(z|0)dx = 1 with respect to 0 yields

T of(xl0)
/ 70 dr =0

— 00

for all € ©. The second differentiation yields

o0 92 f (x]0)
for all # € ©. In addition,
Ol(x,0) Olog f(xz0) 1 0Of(x]0)

90 90 f(zlo) 00

and

dl(z,0) 1 af(x)6)\> 1 9%f(x]0)
o f2<w|e>( )+f( |

- 90 z|0) 962
The former equality yields

az(Xﬁ)} 5 { 1 8f(X|9)] _ /+°° 1 8f(x|9)f(x|9)dz/+°° 8f(w|9)dz:07

Ee{ 90 f(X10) 00 ~ f|o) o6 w00



which is our first result. The latter equality yields

b [P = [ g () o
1(0) = K,

- /m( <1|> fée ) (eloyda
- / :o f(i|9) <8f(x| ))

~ g [0],

in view of equation (1). So,

06?

which is our second result. O

Example Let us calculate Fisher information for an N(u,0?) distribution where o2 is known. Thus, our
parameter § = p. The density of a normal distribution is f(z|u) = exp(—(z — p)?/(20?))/v/27. The log-
likelihood is I(z, ) = —log(27) /2 — (z—u)?/(202). So Al(z, 1) /O = (x—pu)/0? and &?1(z, p)/Ou? = —1/02.
So —Ep[0%1(X, ) /0u?] = 1/0%. At the same time,

16) = Eul(0U(X, 1)/00)) = Bul(X — 1?/0"] = 1/0?
So, as was expected in view of the theorem above, I(0) = —E,,[0%1(X, 1)/0p?] in this example.

Example Let us calculate Fisher information for a Bernoulli(d) distribution. Note that a Bernoulli dis-
tribution is discrete. So we use probability mass function (pms) instead of pdf. The pms of Bernoulli(6)
is f(z]0) = 0°(1 — 0)'=® for € {0,1}. The log-likelihood is I(z,0) = zlogf + (1 — x)log(l — #). So
ol(x,0)/00 = x/0 — (1 —x)/(1 — 0) and 9%I(x,0)/06* = —x/6%> — (1 —x)/(1 — 0)%. So

Ep[(91(X,0)/90)°] = Eo[(X/6—(1—X)/(1-6))*
= Ep[X?/0°] = 2E¢[X (1 — X)/(6(1 - 0))] + Ep[(1 — X)*/(1 - 0)]
= Bo[X/0°] + Ep[(1 - X)/(1 — 0)°]
= 1/(6(1-9))



since z = 2%, (1 —x) =0, and (1 —z) = (1 — 2)? if x € {0,1}. At the same time,

—Ey[0%1(X,0)/00?] = Eo[X/60*+ (1 —X)/(1—-6)?
= 0/0*+(1-0)/(1-06)
= 1/0+1/(1-0)
= 1/(6(1-19))

So I(0) = —E»[0%1(X,0)/00?] as it should be.

2.1 Information for a random sample

Let us now consider Fisher information for a random sample. Let X = (Xq,..., X;,) be a random sample
from distribution f(z|f). Then the joint pdf is f,(z) = [[, f(2;|0) where z = (21,...,2,). The joint
log-likelihood is 1, (z,6) = "1, I(z;,6). So Fisher information for the sample X is

1(6) = Eol(dl.(X,6)/00)"]
= Bo[ Y (9U(X,0)/00)(0U(X;,0)/00)

1<ij<n

n

= Eo[) (0U(Xi,0)/06)"] +2Bo[ D (9U(Xi,0)/060)(9U(X;,6)/09)]
i=1 1<i<j<n

n

= Eo[) (01(X;,0)/00)]
=1
= nl(0)

where we used the fact that for any i < j, Ep[(0l(X,,0)/06)(01(X;,0)/06)] = 0 by independence and first

information equality. Here I(6) denotes Fisher information for distribution f(z|0).

3 Rao-Cramer bound

An important question in the theory of statistical estimation is whether there is a nontrivial bound such

that no estimator can be more efficient than this bound. The theorem below is a result of this sort:

Theorem 4 (Rao-Cramer bound). Let X = (X1,..., X,,) be a random sample from distribution f(x|0) with
information I,,(0). Let W(X) be an estimator of 6 such that (1) dEg[W(X)]/d0 = [ W (x)df(x,0)/d0dx
where v = (21,...7,) and (2) V(W) < co. Then V(W) > (dEg[W(X)]/d)?/1,(0). In particular, if W is
unbiased for 0, then V(W) > 1/1y(6).



Proof. The first information equality gives Ey[0l(X,6)/00] = 0. So,

cov(W(X),0l(X,0)/00) = E[W(X)dl(X,0)/00]
= /W(x)@l(x,@)/@@f(:d@)dw

= /W(ﬂf)c?f(wI@)/@@ - (1/f(x10)) f (z]0)dz

= /W(m)af(a:|€)/80dx
= dEy[W(X)]/d6.

By the Cauchy-Schwarz inequality,
(cov(W(X),01(X,0)/00)* < V(W (X))V(9I(X,0)/00) = V(W (X))I,(6).

Thus,
V(W(X)) > (dEg[W (X)]/d6)* /1,,(6).

If W is unbiased for 0, then Ey[W (X)] =6, dEp[W (X)]/d0 = 1, and V(W (X)) > 1/I,(0). O

Example Let us calculate the Rao-Cramer bound for random sample X1, ..., X;, from Bernoulli(6) distri-
bution. We have already seen that I(6) = 1/(8(1 — 0)) in this case. So Fisher information for the sample is
I,(0) =n/(6(1 — 6)). Thus, any unbiased estimator of 6, under some regularity conditions, has variance no
smaller than 6(1—6)/n. On the other hand, let § = X,, = >, Xi/n be an estimator of 6. Then Ey 0] =0,
i.e. 0 is unbiased, and V(f) = (1 — 0)/n which coincides with the Rao-Cramer bound. Thus, X,, is the
uniformly minimum variance unbiased (UMVU) estimator of . Word “uniformly” in this situation means

that X,, has the smallest variance among unbiased estimators for all 6 € ©.

Example Let us now consider a counterexample to the Rao-Cramer theorem. Let X7, ..., X;, be a random
sample from UJ[0,0]. Then f(x;|0) = 1/0 if z; € [0,6] and 0 otherwise. So I(z;,0) = —log6 if z; € [0,6].
Then 91/00 = —1/6 and 0%1/00% = 1/6%. So I(#) = 1/6? while —Ey[0%1(X;,0)/00%] = —1/6% # I(6). Thus,
the second information equality does not hold in this example. The reason is that support of the distribution
depends on 6 in this example. Moreover, consider an estimator 6 = ((n+ 1)/n)X(ny of 0. Then Eg[X ()] =0
and

V(0) = ((n+1)*/n*)V(X(n) = 6*/(n(n +2))

as we saw when we considered order statistics. So 6 is unbiased, but its variance is smaller than 1/1,,(0) =
62/n?. Thus, the Rao-Cramer theorem does not work in this example as well. Again, the reason is that

Rao-Cramer theorem assumes that support is independent of parameter.
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