
Lecture 6
E�cient estimators. Rao-Cramer bound.

1 MSE and Su�ciency
Let X = (X1, ..., X ˆ

n) be a random sample from distribution fθ. Let θ = δ(X) be an estimator of θ. Let
T (X) be a su�cient statistic for θ. As we have seen already, MSE provides one way to compare the quality of
di�erent estimators. In particular, estimators with smaller MSE are said to be more e�cient. On the other
hand, once we know T (X), we can discard X. How do these concepts relate to each other? The theorem
below shows that for any estimator θ̂ = δ(X), there is another estimator which depends on data X only
through T (X) and is at least as e�cient as θ̂:

Theorem 1 (Rao-Blackwell). In the setting above, de�ne φ(T ) = E[δ(X)|T ]. Then θ̂2 = φ(T (X)) is an
estimator for θ and MSE(θ̂2) ≤ MSE(θ̂). In addition, if θ̂ is unbiased, then θ̂2 is unbiased as well.

Proof. To show that θ̂2 is an estimator, we have to check that it does not depend on θ. Indeed, since T is
su�cient for θ, the conditional distribution of X given T is independent of θ. So the conditional distribution
of δ(X) given T is independent of θ as well. In particular, the conditional expectation E[δ(X)|T ] does not
depend on θ. Thus, φ(T (X)) depends only on the data X and θ̂2 is an estimator.

MSE(θ̂) = E[(θ̂ θ̂ θ̂− 2 + 2 − θ)2]

= E[(θ̂ ˆ− θ )2 θ̂2 ] + 2E[( ˆ− θ2)(θ̂2 − θ)] + E[(θ̂2 − θ)2]

= E[(θ̂ ˆ− θ2)2] + 2E[(θ̂ ˆ− θ2)(θ̂2 − θ)] + MSE(θ̂2)

= E[(θ̂ ˆ− θ2)2] + MSE(θ̂2),

where in the last line we used

E[(θ̂ ˆ− θ2)(θ̂2 − θ)] = E[(δ(X)− φ(T (X)))(φ(T (X))− θ)]

= E[E[(δ(X)− φ(T (X)))(φ(T (X))− θ)|T ]]

= E[(φ(T (X))− θ)E[(δ(X)− φ(T (X)))|T ]]

= E[(φ(T (X))− θ) · (E[δ(X)|T ]− φ(T (X)))]

= 0,

since E[δ(X)|T ] = φ(T (X)).
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To show the last result, we have

E[φ(T (X))] = E[E[δ(X)|T ]] = E[δ(X)] = θ

by the law of iterated expectation.

Example Let X1, ..., Xn be a random sample from Binomial(p, k), i.e. P{Xj = m} = (k!/(m!(k −
m)!))pm(1 − p)k−m for any integer m ≥ 0. Suppose our parameter of interest is the probability of one
success, i.e. n

θ = P{Xj = 1} = kp(1 − p)k−1. One possible estimator is θ̂ = i=1 I(Xi = 1)/n. This
estimator is unbiased, i.e. E[θ̂] = θ. Let us �nd a su�cient statistic. The joint densit

∑

y of the data is

∏n

f(x1, ..., xn) = (k!/(x x
i!(k xi)!))p i(1 p)k−xi

i=1

− −

= function(x1, ..., xn)p
∑

xi(1− p)nk−∑
xi

Thus, T =
∑n

i=1 Xi is su�cient. In fact, it is minimal su�cient.
Using the Rao-Blackwell theorem, we can improve θ̂ by considering its conditional expectation given T .

Let φ = E[θ̂|T ] denote this estimator. Then, for any nonnegative integer t,

φ(t) = E[

n

∑n n

I(Xi = 1)/n
=1

|
∑

Xi = t]
i i=1

=
∑

n

∑n

P
i=1

{Xi = 1| Xj = t
j=1

}/n

= P{X1 = 1|
∑

Xj = t
j=1

}

P
=

{ n
X1 = 1,

∑
j=1 Xj = t}

P{∑n
j=1∑

Xj = t}
P{X1 = 1 n

, j=2 Xj = t− 1
=

}
P{∑n

j=1 Xj = t}
P

=
{X1 = 1} n

P{∑j=2 Xj = t− 1}
P{∑n

j=1 Xj = t}
kp(1− p)k−1 · (k(n− 1))!/((t 1)!(k(n 1) (t 1))!)pt−1(1 p)k(n−1)−(t−1)

=
− − − − −

(kn)!/(t!(kn− t)!)pt(1− p)kn−t

k(k(n 1))!
=

− /((t− 1)!(k(n− 1)− (t− 1))!)
(kn)!/(t!(kn− t)!)

k(k(n
=

− 1))!(kn− t)!t
(kn)!(kn− k + 1− t)!

where we used the fact that X1 is independent of (X2, ..., Xn),
∑n n

i=1 Xi ∼ Binomial(kn, p), and
∑

i=2 Xi ∼
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Binomial(k(n− 1), p). So our new estimator is

(ˆ k k(n− 1))!(kn
θ2 = φ(X1, ..., Xn) =

−
(kn)!(kn− k +

∑n
i=1 Xi)!(

∑n
i=1 Xi)

1− n
i=1 Xi)!

By the theorem above, it is unbiased and at least as e�cient as θ̂. The

∑

procedure we just applied is sometimes
informally referred to as Rao-Blackwellization.

2 Fisher information
Let f(x|θ) with θ ∈ Θ be some parametric family. For given θ ∈ Θ, let Suppθ = {x : f(x|θ) > 0}. Suppθ

is usually called the support of distribution f(x|θ). Assume that Suppθ does not depend on θ. As before,
l(x, θ) = log f(x|θ) is called loglikelihood function. Assume that l(x, θ) is twice continuously di�erentiable
in θ for all x ∈ S. Let X be some random variable with distribution f(x|θ). Then

De�nition 2. I(θ) = Eθ[(∂l(X, θ)/∂θ)2] is called Fisher information.

Fisher information plays an important role in maximum likelihood estimation. The theorem below gives
two information equalities:

Theorem 3. In the setting above, (1) Eθ[∂l(X, θ)/∂θ] = 0 and (2) I(θ) = −Eθ[∂2l(X, θ)/∂θ2].

Proof. Since l(∫ x, θ) is twice di�erentiable in θ, f(x|θ) is twice di�erentiable in θ as well. Di�erentiating
identity +∞

f(x−∞ |θ)dx = 1 with respect to θ yields

∫ +∞ ∂f(x|θ)
dx = 0

∂θ−∞

for all θ ∈ Θ. The second di�erentiation yields
∫ +∞ ∂2f(x|θ)

dx = 0
∂θ2

(1)
−∞

for all θ ∈ Θ. In addition,
∂l(x, θ) ∂ log f(x|θ) 1 ∂f(x|θ)

= =
∂θ ∂θ f(x|θ) ∂θ

and
∂2l(x, θ) 1

(
( | 2

∂f x θ)
=

∂θ2
−

f2(x|θ) ∂θ

)
1 ∂2f(x

+
|θ)

.
f(x|θ) ∂θ2

The former equality yields
[
∂l(X, θ)

] [
1 ∂f(X|θ)] ∫ +∞ 1 ∂f(x|θ) +∞ ∂f(x θ)

Eθ = Eθ = f(x|θ)dx = ,
∂θ f(X|θ) (x|θ) ∂θ−∞

∫ |
dx = 0

∂θ f ∂θ−∞
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which is our �rst result. The latter equality yields
[

2 2
∂ l(X, θ) ∂ )

Eθ

] +∞ 1 f(x θ
=

|
dx

∂θ2
−

∫
f(x|θ)−∞

(
∂θ

)

in view of equation (1). So,

) 2
∂l(X, θ

I(θ) = Eθ

[(
∂θ

) ]

=
∫ +∞ 1 ∂f(x|θ)

f(x|θ) ∂θ−∞
+

( )2

f(x|θ)dx

=
∫ ∞ 1 2

f(x|θ)
(

∂f(x|θ)
dx

[ ] ∂θ−∞
∂2l(X, θ)

)

= −Eθ ,
∂θ2

which is our second result.

Example Let us calculate Fisher information for an N(µ, σ2) distribution where σ2 is known. Thus, our
parameter θ = µ. The density of a normal distribution is f(x µ) = exp( (x µ)2/(2σ2))/

√| − − 2π. The log-
likelihood is l(x, µ) = − log(2π)/2−(x−µ)2/(2σ2). So ∂l(x, µ)/∂µ = (x−µ)/σ2 and ∂2l(x, µ)/∂µ2 = −1/σ2.
So −Eθ[∂2l(X,µ)/∂µ2] = 1/σ2. At the same time,

I(θ) = Eµ[(∂l(X, µ)/∂µ)2] = E 2 4 2
µ[(X − µ) /σ ] = 1/σ

So, as was expected in view of the theorem above, I(θ) = −Eµ[∂2l(X, µ)/∂µ2] in this example.

Example Let us calculate Fisher information for a Bernoulli(θ) distribution. Note that a Bernoulli dis-
tribution is discrete. So we use probability mass function (pms) instead of pdf. The pms of Bernoulli(θ)
is f(x|θ) = θx(1 − θ)1−x for x ∈ {0, 1}. The log-likelihood is l(x, θ) = x log θ + (1 − x) log(1 − θ). So
∂l(x, θ)/∂θ = x/θ − (1− x)/(1− θ) and ∂2l(x, θ)/∂θ2 = −x/θ2 − (1− x)/(1− θ)2. So

Eθ[(∂l(X, θ)/∂θ)2] = Eθ[(X/θ − (1−X)/(1− θ))2]

= Eθ[X2/θ2]− 2Eθ[X(1−X)/(θ(1− θ))] + Eθ[(1−X)2/(1− θ)2]

= Eθ[X/θ2] + Eθ[(1−X)/(1− θ)2]

= 1/(θ(1− θ))
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since x = x2, x(1− x) = 0, and (1− x) = (1− x)2 if x ∈ {0, 1}. At the same time,

−E 2
θ[∂ l(X, θ)/∂θ2] = Eθ[X/θ2 + (1−X)/(1− θ)2]

= θ/θ2 + (1− θ)/(1− θ)2

= 1/θ + 1/(1− θ)

= 1/(θ(1− θ))

So I(θ) = −Eθ[∂2l(X, θ)/∂θ2] as it should be.

2.1 Information for a random sample
Let us now consider Fisher information for a random sample. Let X = (∏ X1, ..., Xn) be a random sample
from distribution f(x|θ). Then the joint pdf is fn(x) = n

i=1 f(xi|θ) where x = (x1, ..., xn). The joint
log-likelihood is n

ln(x, θ) =
∑

i=1 l(xi, θ). So Fisher information for the sample X is

I(θ) = Eθ[(∂ ( ) )2]

= Eθ[
∑
ln X, θ /∂θ

(∂l(Xi, θ)/∂θ)(∂l(Xj , θ)/∂θ)]
1≤i,j≤n

n

= Eθ[
∑

(∂l(Xi, θ)/∂θ)2] + 2Eθ[ (∂l(Xi, θ)/∂θ)(∂l(Xj , θ)/∂θ)]
i=1 1≤i<j≤n

n

∑

= E 2
θ[ (∂l(Xi, θ)/∂θ) ]

i=1

= nI(

∑

θ)

where we used the fact that for any i < j, Eθ[(∂l(Xi, θ)/∂θ)(∂l(Xj , θ)/∂θ)] = 0 by independence and �rst
information equality. Here I(θ) denotes Fisher information for distribution f(x|θ).

3 Rao-Cramer bound
An important question in the theory of statistical estimation is whether there is a nontrivial bound such
that no estimator can be more e�cient than this bound. The theorem below is a result of this sort:

Theorem 4 (Rao-Cramer bound). Let X = (X1, ..., Xn) be a random sample from distribution f(x|θ) with
information In(θ). Let W (X) be an estimator of θ such that (1) dEθ[W (X)]/dθ = W (x)df(x, θ)/dθdx

where x = (x1, ...xn) and (2) V (W ) < ∞. Then V (W ) ≥ (dEθ[W (X)]/dθ)2/In(θ). In

∫

particular, if W is
θ V (W ) 1/Iθ(θ)unbiased for , then ≥ .
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Proof. The �rst information equality gives Eθ[∂l(X, θ)/∂θ] = 0. So,

cov(W (X), ∂l(X, θ)/∂θ) = E∫ [W (X)∂l(X, θ)/∂θ]

= W (x)∂l(x, θ)/∂θf(x|θ)dx

=
∫

W (x)∂f(x|θ)/∂θ · (1/f(x|θ))f(x|θ)dx

=
∫

W (x)∂f(x|θ)/∂θdx

= dEθ[W (X)]/dθ.

By the Cauchy-Schwarz inequality,

(cov(W (X), ∂l(X, θ)/∂θ)2 ≤ V (W (X))V (∂l(X, θ)/∂θ) = V (W (X))In(θ).

Thus,
V (W (X)) ≥ (dEθ[W (X)]/dθ)2/In(θ).

If W is unbiased for θ, then Eθ[W (X)] = θ, dEθ[W (X)]/dθ = 1, and V (W (X)) ≥ 1/In(θ).

Example Let us calculate the Rao-Cramer bound for random sample X1, ..., Xn from Bernoulli(θ) distri-
bution. We have already seen that I(θ) = 1/(θ(1− θ)) in this case. So Fisher information for the sample is
In(θ) = n/(θ(1− θ)). Thus, any unbiased estimator of θ, under some regularity conditions, has variance no
smaller than n

θ(1 θ̂− θ)/n. On the other hand, let = Xn =
∑

i=1 Xi/n be an estimator of θ. Then Eθ[θ̂] = θ,
i.e. θ̂ is unbiased, and V (θ̂) = θ(1 − θ)/n which coincides with the Rao-Cramer bound. Thus, Xn is the
uniformly minimum variance unbiased (UMVU) estimator of θ. Word �uniformly� in this situation means
that Xn has the smallest variance among unbiased estimators for all θ ∈ Θ.

Example Let us now consider a counterexample to the Rao-Cramer theorem. Let X1, ..., Xn be a random
sample from U [0, θ]. Then f(xi|θ) = 1/θ if xi ∈ [0, θ] and 0 otherwise. So l(xi, θ) = − log θ if xi ∈ [0, θ].
Then ∂l/∂θ = −1/θ and ∂2l/∂θ2 = 1/θ2. So I(θ) = 1/θ2 while −Eθ[∂2l(Xi, θ)/∂θ2] = −1/θ2 = I(θ). Thus,
the second information equality does not hold in this example. The reason is that support of the distribution
depends on θ in this example. Moreover, consider an estimator θ̂ = ((n+1)/n)X(n) of θ. Then Eθ[X(n)] = θ

and
V (θ̂) = ((n + 1)2/n2)V (X(n)) = θ2/(n(n + 2))

as we saw when we considered order statistics. So θ̂ is unbiased, but its variance is smaller than 1/In(θ) =

θ2/n2. Thus, the Rao-Cramer theorem does not work in this example as well. Again, the reason is that
Rao-Cramer theorem assumes that support is independent of parameter.
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