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Bayesian Decision Theory
We have a state space Θ where each state θ ∈ Θ. We make action a ∈ A, which has different
consequences depending on the state θ. Our consequence is denoted by ’loss function’

l(a, θ) : A×Θ→ R

This can be also interpreted as ’utility function’ with opposite sign. We observe a signal X ∈ Xθ
associated with the state that we know the likelihood f(X|θ). We have a prior on the state, which is a
distribution over Θ, denoted by p(θ). Our objective is to find a decision function d(X) : X → A that
minimizes the following object.

ˆ
[

ˆ
l(d(X), θ)f(X|θ)dX]p(θ)dθ =

ˆ
Eθ[l(d(X), θ)]dp(θ) =

ˆ
R(θ, d(X))dp(θ)

Θ Xθ Θ Θ

The object is often referred as ’expected utility’ in economic theory. We callR(θ, d(X)) ≡ Eθ[l(d(X), θ)]
the risk function. Note that the object can be also written as

ˆ ˆ
f(X θ)p(θ)

l(d(X), θ)
|

dθm(X)dX =

ˆ ˆ
l(d(X), θ)f(θ|X)dθm(X)dX

m(X)X Θ X Θ

where m(X) is the marginal density of X. Then the decision making problem reduces to

min

ˆ
l(d, θ)f(θ|X)dθ = minE[l(d, θ)

d dΘ

|X]

for each X. That is, the Bayesian decision is to minimize the posterior loss.
Let’s take this process for the example of estimation. Our decision d is to estimate θ and some

natural loss functions would be

l1(d, θ) = (θ − d)2

l2(d, θ) = |θ − d|
l3(d, θ) = τ |θ − d|+ + (1− τ)|θ − d|−
l4(d, θ) = L · 1{|θ−d|>K}

It is not hard to find that minimizing posterior loss leads to posterior mean, median, τ -quantile and
mode respectively for the above loss functions. Note that the risk function associated with l1(d, θ)
is MSE, which is the key concept of performance in frequentist view. Frequentist way of ’optimal’
estimation is mostly described as

min maxR(θ, d(X))
d(X) θ
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i.e. to minimize the maximal risk on Θ. Their view of the problem is as follows. Since we don’t
have any idea which state we are on, we should minimize the worst risk. The above problem is often
approached by using Bayesian tools. For example, an estimator θ̂(X) is minimax if it has constant
risk and it is a Bayes estimator for some prior.

Now let’s look at the problem of testing. Let us partition our parameter space by Θ1 and Θ0.
We have two possible actions, namely reject or accept the null hypothesis of θ ∈ Θ0. A natural loss
function would be

l(1, θ) = k if θ ∈ Θ0

l(0, θ) = 0 if θ ∈ Θ0

l(1, θ) = 0 if θ ∈ Θ1

l(0, θ) = 1 if θ ∈ Θ1

where 0 and 1 denote accpet and reject respectively. Minimizing posterior loss, we have our decision
rule as follows.

P (θ )
Reject

∈ Θ X
if 1|
P (θ ∈ Θ0|X)

≥ k

and we get posterior odd-ratio test as the Bayesian optimal test. If we have simple hypotheses, then
the test becomes likelihood ratio test which is known as most powerful test by the Neyman-Pearson
lemma.

Some Principles behind Bayesian Statistics

Sufficiency Principle
Two observations x and y factorizing through the same value of a sufficient statistic T , that is, such
that T (x) = T (y), must lead to the same inference on θ.

Likelihood Principle
The information brought by and observation x about θ is entirely contained in the likelihjood function
l(θ|x). Moreover, if x1and x2 are two observations depending on the same parameter θ, such that there
exists a constant c satisfying

l1(θ|x1) = cl2(θ|x2)

for every θ, they then bring the same information about θ and must lead to identical inferences.
It is known that Bayesian inference satisfies both principles. Both principles may look natural.

However, the latter principle is controversial. Frequentist testing or confidence interval often violates
the likelihood principle. Most apparent cases are when we have stopping rule for experiments. For
example, consider a simple model of coin tossing. We want to know p, the probability of getting head
of the coin. We consider two different experiments.

1. We toss the coin 12 times. Let X be the number of times that head showed up.

2. We toss the coin until we obtain 3 heads. Let Y be the number of tails during the experiment.

Suppose we observed X = 3 for the first experiment and Y = 9 for the second experiment. Then both
likelihoods are proportional to p3(1− p)9, and the principle dictates that inference on p should be the
same for both experiments. However, note that the MLEs for both experiments are

X
p̂1 =

12
3

p̂2 =
Y + 3
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and obviously V ar(p̂1) = V ar(p̂2). That is, in frequentist’s view, they have different sampling distri-
butions and therefore leads to different inferences on p. Bayesian procedure, on the other hand, yields
the same posterior of p for both experiments.
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