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Linear Algebra Vector Spaces and Subspaces

Definition (Real Vector Space)

A triple (V ,+, ·) consisting of a set V , addition +:

V × V → V

(x , y)→ x + y

and multiplication · :
R× V → V

(λ, x)→ λ · x
is called a Real Vector Space if the following 8 conditions hold:
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Linear Algebra Vector Spaces and Subspaces

1 (x + y) + z = x + (y + z) for all x , y , z ∈ V (assoc of add)

x + y = y + x for all x , y ∈ V (commut of add)

There is an element 0 ∈ V (the zero vector) s.t. x + 0 = x ∀x ∈ V
For each element x ∈ V , there is an element y ∈ V such that
x + y = 0 (additive inverse)

1 · x = x for every x ∈ V (identity)

λ · (µ · x) = (λµ) · x for all λ, µ ∈ R, x ∈ V (assoc mult)

λ · (x + y) = λ · x + λ · y for all λ ∈ R, x , y ∈ V (distr)

(λ+ µ) · x = λ · x + µ · x for all λ, µ ∈ R, x ∈ V (distr)
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Linear Algebra Vector Spaces and Subspaces

Definition (Subspace)

Let V be a real vector space. A subset U ⊆ V is called a subspace of V if
U is nonempty and for any x , y ∈ U and λ ∈ R, x + y ∈ U and λ · x ∈ U

That is: A subspace is a subset that is closed under addition and
multiplication.
The smallest subspace of any vector space is the Null Space {0}.
Any intersection of subspaces of a vector space V is a subspace of V .
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Linear Algebra Vector Spaces and Subspaces

Example
Finite Euclidean Space:
nR = R×R× · · · ×R = {(x1, . . . , xn) : xi ∈ R, ∀i}

Note that by x = (x . . . x ) we denote a vector in n
1, , n R . One of the

conventions is to call that vector a row vector and employ the notation xT

for a column vector.
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Linear Algebra Vector Spaces and Subspaces

Definition

Let x = (x1, ..., xn) and y = (y1, ..., yn) be two vectors. Define the sum by:

x + y = (x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn)

Definition

Let x = (x1, ..., xn) be a vector and λ a real number. Define multiplication
by:

λ · x = λ(x1, ..., xn) = (λx1, ...,λxn)

One can verify that all 8 conditions from the definition of the vector space
hold true for nR so it is a vector space.
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Linear Algebra Vector Spaces and Subspaces

Example
A more complicated vector space is the set of all functions from a given
set E to R. E can be anything. Define f + g such that
(f + g)(x) = f (x) + g(x) and λf such that (λf )(x) = λf (x).
Subspaces are given by any property that is conserved by addition and
multiplication; for example, the set of continuous functions from E into R

denoted by C (E ), or the set of n-times continuously differentiable
functions C n(E ) are vector spaces.
Be careful and distinguish between 0 ∈ V and 0 ∈ R; we use the same
notation for convenience.
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Linear Algebra Vector Spaces and Subspaces

Example
The set of all polynomials with coeffi cients from F is denoted by P(F).
Example
The set of all polynomials up to degree n with coeffi cients from F is
denoted by Pn(F).
Example
The set of all matrices of dimension m× n with coeffi cients from F is
denoted by Mm×n(F).
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Linear Algebra Linear Independence

Definition (Linear Combination)

Let V be a real vector space . A vector v ∈ V is called a linear
combination of vectors if there exist a finite number of vectors
v1, ..., vn ∈ V and scalars a1, ..., an ∈ R such that
v = a1v1 + a2v2 + · · ·+ anvn. If the scalars are nonnegative and sum to 1
then we may also use the term convex combination.

Definition (Span)

Let S be a nonempty subset of a vector space V . The span of S , denoted
span(S), is the set consisting of all linear combinations of the vectors in S .
For convenience, we define span(∅) = {0}.

Theorem
The span of any subset S of a vector space V is a subspace of V .
Moreover, any subspace of V that contains S must also contain the span
of S.
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Linear Algebra Linear Independence

Definition (Generates (or spans))

A subset S of a vector space V generates (or spans) V if span(S) = V .

Example
The vectors (1, 1, 0), (1 0 1) and (0 1 1) span 3, , , , , R since an arbitrary
vector (a1, a2, a 3

3) ∈ R is a linear combination of the three given vectors.
In fact, the scalars r , s, t for which

r(1, 1, 0) + s(1, 0, 1) + t(0, 1, 1) = (a1, a2, a3)

are r 1= 2 (a1 + a2 − a3), s =
1
2 (a1 − a2 + a3), t =

1 (−a1 +2 a2 + a3)
Note that (1, 0, 0), (0, 1, 0), and (0, 0, 1) also span 3R .
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Linear Algebra Linear Independence

Definition (Linearly Dependent)

A subset S of a vector space V is called linearly dependent if there exists
a finite number of distinct vectors u1, u2, ..., un in S and scalars
a1, a2, ..., an, not all zero, such that

a1u1 + a2u2 + · · ·+ anun = 0

In this case, we also say that the vectors of S are linearly dependent.

Example
Let S = {(1, 3,−4, 2), (2, 2,−4, 0), (1,−3, 2,−4), (−1, 0, 1 4, 0)} ∈ R . S
is linearly dependent if we can find scalars a1, a2, a3, and a4, not all zero,
such that

a1(1, 3,−4, 2) + a2(2, 2,−4, 0) + a3(1,−3, 2,−4) + a4(−1, 0, 1, 0) = 0

One such solution is (a1, a2, a3, a4) = (4,−3, 2, 0). So these vectors are
linearly dependent (alt, S is linearly dependent).
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Linear Algebra Linear Independence

Definition (Linearly Independent)

A subset S of a vector space that is not linearly dependent is called linearly
independent. As before, we say the vectors of S are linearly independent.

Properties

1 The empty set is linearly independent
2 A set consisting of a single nonzero vector is linearly independent
3 A set is linearly independent iff the only representations of 0 as linear
combinations of its vectors are trivial representations (i.e., coeffi cients
all zero)
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Linear Algebra Basis and Dimension

Definition (Basis)

A basis β for a vector space V is a linearly independent subset of V that
generates V .

Examples

∅ is a basis for {0}
The standard basis of nR is {ei : ei = (0, ..., 1, ..., 0), i = 1, ..., n}
The standard basis of Pn(F) is the set {1, x , x2, ..., xn}
A basis of P(F) is the set {1, x , x2, ...}
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Linear Algebra Basis and Dimension

Theorem

Let V be a vector space and β = {u1, ..., un} be a subset of V . Then β is
a basis for V iff each v ∈ V can be uniquely expressed as a linear
combination of vectors of β.

Proof
⇒ Let β be a basis for V . If v ∈ V , then v ∈span(β). Thus v is a linear
combination of the vectors of β. Suppose that

n n

v = ∑ aiui = ∑ biui
i=1 i=1

are two such representations of v . Subtracting these two equations yields
n

0 = ∑(ai bi )ui
i=1

−

Since β is linearly independent, ai − bi = 0∀i , so v is uniquely expressible
as a linear combination of the vectors of β.
⇐ Exercise.�
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Linear Algebra Basis and Dimension

Theorem (Replacement Theorem)

Let V be a vector space that is generated by a set G (span(G ) = V )
containing exactly n vectors, and let L be a linearly independent subset of
V containing exactly m vectors. Then m ≤ n and there exists a subset H
of G containing exactly n−m vectors such that L∪H generates V .

Corollary

Let V be a vector space having a finite basis. Then every basis for V
contains the same number of vectors. (If you added a vector, it would
break linear independence; if you took a vector away, it would break span.)
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Linear Algebra Basis and Dimension

Definition (Dimension)

A vector space is called finite-dimensional if it has a basis consisting of a
finite number of vectors. The unique number of vectors in each basis for
V is called the dimension of V and is denoted by dim(V ). A vector space
that is not finite-dimensional is called infinite-dimensional.

Examples

The vector space {0} has dimension 0
The vector space nR has dimension n. (Recall the standard basis
(1, 0.., 0), (0, 1, 0, ..., 0), ...)

C 0([0, 1]) has infinite dimension. (Cts functions on [0, 1].) Intuition:
Weierstrass. (Allow polynomial to have infinite terms (countable).)
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Linear Algebra Basis and Dimension

Corollary

Let V be a vector space with dimension n.
a) Any finite generating set for V contains at least n vectors, and a
generating set for V that contains exactly n vectors is a basis for V .
b) Any linearly independent subset of V that contains exactly n vectors is
a basis for V .
c) Every linearly independent subset of V can be extended to a basis for V

Proof of (c)
Let β be a basis for V . If L is a linearly independent subset of V
containing m vectors, then the replacement theorem asserts that there is a
subset H of β containing exactly n−m vectors such that L∪H generates
V . Now L∪H contains at most n vectors; therefore (a) implies that L∪H
contains exactly n vectors and that L∪H is a basis for V .�
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Linear Algebra Basis and Dimension

Example
Do the polynomials x3 − 2x2 + 1, 4x2 − x + 3, and 3x − 2 generate
P3(R)? (Hint: think of standard basis.)

Example
Is {(1, 4,−6), (1, 5, 8), (2, 1, 1), (0, 1, 0)} a linearly independent subset of
3R ? (Hint: think of standard basis.)
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Linear Transformations and Matrices

Linear Transformations

Operations on Matrices

Rank of a Matrix
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Linear Transformations and Matrices Linear Transformations

Definition (Linear Transformation)

Let V and W be real vector spaces. We call a function T : V → W a
linear transformation from V to W if, for all x , y ∈ V and c ∈ R, we
have
a) T (x + y) = T (x) + T (y) and
b) T (cx) = cT (x)
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Linear Transformations and Matrices Linear Transformations

A Matrix

An m× n matrix A with entries from R is a rectangular array of the form
a a 11 12 · · · a1na21 a22 · · · a2n

A = . . .. . .


. . .
am1 am2 · · amn


·


where each entry aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) ∈ R . We call the entries aii
the diagonal entries of the matrix. An m× 1 matrix is an element of mR

and is called a column vector. A 1× n matrix is an element of nR and is
called a row vector.
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Linear Transformations and Matrices Linear Transformations

Matrix representation of a linear transformation

The matrix A is associated with the linear mapping from x ∈ nR to
y ∈ mR that satisfies

n

yi = ∑ aijxj
j=1

We write y = Ax .
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Linear Transformations and Matrices Linear Transformations

Example

Let T : 2R → 3R be the linear transformation defined by
T (a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2). Then the matrix associated with this
mapping is

MT =


1 3
0 0
2 −4



since MT a = (a1 + 3a2, 0, 2a1


− 4a2).


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Linear Transformations and Matrices Operations on Matrices

The set of all m× n matrices with real entries is a vector space, which we
denote by Mm×n(R), with the following operations of matrix addition
and scalar multiplication: For A,B ∈ Mm×n(R) and c ∈ R,

(A+ B)ij = Aij + Bij

(cA)ij = cAij

for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Linear Transformations and Matrices Operations on Matrices

Properties of Matrices

A+ B = B + A

(A+ B) + C = A+ (B + C )

(λ+ µ)A = λA+ µA

λ(A+ B) = λA+ λB

λ(µA) = (λµ)A

The null matrix is the matrix that has all elements equal to 0 and is
denoted by 0.
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Linear Transformations and Matrices Operations on Matrices

Gaussian Elimination

Definition ((Row) Echelon Form)

A matrix is in (row) echelon form if
a) All rows that contain only zeros are grouped at the bottom of the matrix
b) For each row that does not contain only zeros, the first nonzero entry
of the row (the pivot) appears strictly to the right of the pivot of each row
that appears above it.

Definition
A matrix is in reduced row echelon form if in addition, every leading
coeffi cient is 1 and is the only nonzero entry in its column.
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Linear Transformations and Matrices Operations on Matrices

Example

This matrix is in reduced row echelon form:
1 0 0 0 2


0 1 0 0 00 0 1 0 −5
0 0 0 1 3


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Linear Transformations and Matrices Operations on Matrices

Every matrix can be transformed to a matrix in row echelon form using (a
finite number of) elementary row operations, which are defined as:
a) Add a multiple of one row to another
b) Interchange two rows
c) Multiply a row by a nonzero constant
This is Gaussian elimination.
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Linear Transformations and Matrices Operations on Matrices

The matrix product of A and B is defined when A is m× n and B is
n× p. The product is then defined by:

n

(AB)ik = ∑ aijbjk
j=1

and AB is an m× p matrix. This definition is motivated by the fact that if
A and B represent linear mappings then AB represents the composition of
the mappings A ◦ B.

Xiao Yu Wang (MIT) Math Camp 2010 08/10 30 / 88



Linear Transformations and Matrices Operations on Matrices

Example

[
1 2 3

] 1 [  1 ∗ 1+ 2 ∗ 2+ 3
2 =

∗ 3 = 15
4 2 3 4

3
∗ 1+ 2 ∗ 2+ 3 ∗ 3 = 17

]
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Linear Transformations and Matrices Operations on Matrices

Properties

(AB)C =A(BC) (assoc)

A(B+C)=AB+AC (distr)

(A+B)C=AC+BC (distr)
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Linear Transformations and Matrices Operations on Matrices

Properties

Note that if AB exists, BA need not be defined and even if it exists, it is
not usually true that AB = BA.
However, commutativity holds for symmetric matrices.

Definition

(Symmetric matrix) An n×m matrix A is symmetric iff aij = aji for
i ∈ {1, ..., n} and j ∈ {1, ...,m}.
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Linear Transformations and Matrices Operations on Matrices

Several other types of matrices are important:

Definition

(Diagonal matrix) A diagonal matrix is a square matrix in which all
elements off the main diagonal are zero. That is, dij = 0 for all i 6= j ,
i , j ∈ {1, ..., n}.

For example:


1 0 0

0 1 0 diagonal.
0 0

 the identity matrix is
1

Xiao Yu Wang (MIT) Math Camp 2010 08/10 34 / 88



Linear Transformations and Matrices Operations on Matrices

Definition

(Triangular matrix) An m× n matrix is triangular if either all the elements
above the main diagonal and the main diagonal are nonzero, and all other
elements are zero, or all the elements below the main diagonal and the
main diagonal are zero. The first matrix is called "upper triangular", and
the second, "lower triangular".

1 2 5
For example: 0 4 3 upp

0 1

 is er triangular.
0
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Linear Transformations and Matrices Operations on Matrices

Definition

(Permutation matrix) A permutation matrix is a square n× n binary
matrix that has exactly one entry 1 in each row and each column and 0’s
elsewhere. Each such matrix represents a specific permutation of n
elements and, when used to multiply another matrix, can produce that
permutation in the rows or

1 0 0 3
For ex: 0 0 1

0 1 0


2
4


=

columns of the other matrix.
3   4
2


Definition

(Doubly stochastic matrix) A doubly stochastic matrix is a square matrix
of nonnegative real numbers, each of whose rows and columns sums to 1.
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Linear Transformations and Matrices Operations on Matrices

The transpose of an m× n matrix A is denoted by AT or A′. If A has
elements aij , then A′ has elements aji .
Note that if the matrix is symmetric, then it equals its transpose.
Properties

(A′)′ = A

(A+ B)′ = A′ + B ′

(AB)′ = B ′A′
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Linear Transformations and Matrices Operations on Matrices

We call A non-singular (invertible) if there exists a matrix A−1 such that

−1


1 0

−1  .AA = A A = I where I = . .


0 1


is the


identity matrix.

Note that these are square matrices. Nonsquare matrices are not invertible,
though they may have "left" or "right" inverses (not important).
Noninvertible square matrices are called singular.
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Linear Transformations and Matrices Operations on Matrices

Properties

(AB)−1 = B−1A−1

(A′)−1 = (A−1)′

The mapping that corresponds to the inverse of a matrix A corresponds to
the inverse of the mapping associated with A.
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Linear Transformations and Matrices Operations on Matrices

Algorithm for Computing Matrix Inverse

Augment matrix A with identity matrix

Apply elementary row operations to this augmented matrix to
transform A to I

The matrix in the place of the original identity matrix is now A−1
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Linear Transformations and Matrices Operations on Matrices

Example

A =


1 0 11 1 −1
0 1 0


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Linear Transformations and Matrices Operations on Matrices

Perform elementary operations: multiply the second row by −1 and add it
to the first row.

1 0 1 1 0 0
 

1 0 0 11 1 −1 0 1 0
0 1 0 0 0

 
1

 2
1
2 − 12

0 1 0 0 0 1
0 0 1 1

2 −
1
2

1
2


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Linear Transformations and Matrices Operations on Matrices

Thus

A−1 =

 1 2
1
2 − 12

0 0 1
1
2 −

1
2

1
2


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Linear Transformations and Matrices Operations on Matrices

a
Trick for inverting 2× 2 matrices

[
b

c d

]
.

1 Calculate (ad − bc) = D

2 Then the inverse is: 1 d
D

[
−b

−c a

]
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Linear Transformations and Matrices Rank of a Matrix

Definition (Column/Row Rank)

The column rank of an m× n matrix A is the largest number of linearly
independent column vectors A contains. The row rank is the largest
number of linearly independent row vectors A contains.

It can be shown that the row rank and column rank are equal. The row
and column rank of a matrix is often referred to simply as the rank of the
matrix. We denote the rank of A by rk(A).

Definition (Column Space)

The column space of A is the set of vectors generated by the columns of
A, denoted by CS(A) = {y : y = Ax , x ∈ nR }. The dimension of
CS(A) = rk(A).
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Linear Transformations and Matrices Rank of a Matrix

Definition (Null Space)

The null space of A, N(A) = {x ∈ nR : Ax = 0}.

Theorem

If A is an m× n matrix, then rk(A)+ dimN(A) = n.

Theorem
Let A be an n× n matrix. Then the following are equivalent
a) A is nonsingular (invertible)
b) N(A) = {0}
c) rk(A) = n
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Linear Transformations and Matrices Rank of a Matrix

Determining Rank and Bases for Row, Column, and Null Spaces
Let A ∈ Mm (×n R) and U be a matrix in row echelon form obtained from
A by row operations. Then

RS(A) = RS(U) and N(A) = N(U)

The nonzero rows of U form a basis for RS(U)

The columns of U that contain the pivots form a basis for the CS(U)

Whenever certain columns of U form a basis for CS(U), the
corresponding column vectors of A form a basis for the CS(A)
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Linear Transformations and Matrices Rank of a Matrix

Example
Find a basis for the row space, column space, and null space, and rk(A),
where

A =


2 −1 34 2 12 3 −2


8 0 7


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Linear Transformations and Matrices Rank of a Matrix

Row echelon form gives

U =


2 −1 30 4 −50 0 0


0 0 0



Xiao Yu Wang (MIT) Math Camp 2010 08/10 49 / 88



Linear Transformations and Matrices Rank of a Matrix

A basis for RS(A) is {(2,−1, 3), (0, 4,−5)}
.

2

−

4
A basis for the CS(A) is

2


1


8

  2
,

 3
0

 . And clearly rk(A) = 2.
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Linear Transformations and Matrices Rank of a Matrix

To find a basis for the N(A) = N(U) we can examine the vectors, x , such
that Ux = 0. This means that x 5

2 = 4 s and x1 =
1
2x2 −

3 =2 s where x3 s.
Thus

x =


x 1

x2
x3

 =

 1 2
5
4 s −

3
2 s

5
4 s
s

 = s

− 785
4
1


So,

− 7 8
5 (4
1

 is a basis for N A).
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Linear Transformations and Matrices Determinant

Definition (Determinant)

Let A ∈ Mn n(R). If n = 1, so that A = (A× 11), we define det(A) = A11.
For n ≥ 2, we define det(A) recursively as

n

det A ∑ −1 i+j( ) = ( ) Aij
j=1

· det(Ãij )

for any i ∈ {1, ..., n} where Ãij denotes the (n− 1)× (n− 1) matrix
obtained from A by deleting row i and column j . The scalar det(A) is
called the determinant of A and is also denoted by |A| . The scalar

cij = (−1 i) +j det(Ãij )

is called the cofactor of the entry of A in row i , column j .
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Linear Transformations and Matrices Determinant

Example

Find the determinant of matrix A:

A =


1 3 −3−3 −5 2
−4 4 6


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Linear Transformations and Matrices Determinant

Example ]
3

=

[
2

Then: det(A) 1 det
−5

3 det
[
−3 2

]
3 det

[
− −5

4 6
− −4 6

− −4 4

]
=

22− 3(26)− 3(−32) = 40.

Xiao Yu Wang (MIT) Math Camp 2010 08/10 54 / 88



Linear Transformations and Matrices Determinant

Theorem

For any A,B ∈ Mn×n(R), det(AB) = det(A) · det(B).

Corollary

A matrix A ∈ Mn n(R) is invertible iff det(A) = 0. Furthermore, if A is×
invertible, then det A−1 1

6
( ) = det(A) .

Theorem

For any A ∈ Mn×n(R), det(A′) = det(A).
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Linear Transformations and Matrices Kronecker Product

Definition

(Kronecker product) If A is an n×m matrix and B is a p × q matrix, the
Kronecker product of A and B is denoted by A⊗ B, where this equals:

a 11B a1mB

an1B anmB


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Linear Transformations and Matrices Diagonalization

In what follows, A ∈ Mn×n(R).

Definition (Eigenvalue/Eigenvector)

If Ax = λx and x ∈ nR \{0}, we say that λ is an eigenvalue of A and x
is an eigenvector associated with λ.

Theorem
The eigenvalues are the roots of the characteristic polynomial of A,
defined as PA(λ) = det(A− λI ). There are at most n eigenvalues.

Theorem

If x1, ..., xk are eigenvectors corresponding to λ1, ...,λk distinct eigenvalues
of A, then {x1, ..., xk} is linearly independent.
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Linear Transformations and Matrices Diagonalization

Definition (Similar)

A is said to be similar to B if there exists an invertible matrix such that

A = PBP−1

Definition (Diagonalizable)

A is diagonalizable if A is similar to a diagonal matrix, i.e. there exists an
invertible matrix P and a diagonal matrix Λ such that A = PΛP−1
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Linear Transformations and Matrices Diagonalization

Theorem
A is diagonalizable iff A has n linearly independent eigenvectors.

Theorem
If A has n real, distinct eigenvalues, then A is diagonalizable.
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Linear Transformations and Matrices Diagonalization

Definition (Splits)

A polynomial f (t) splits over R if there are scalars c , a1, ..., an (not
necessarily distinct) in R such that

f (t) = c(t − a1)(t − a2) · · · (t − an)

Theorem
The characteristic polynomial of any diagonalizable matrix splits.
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Linear Transformations and Matrices Diagonalization

Definition (Multiplicity)

Let λ be an eigenvalue of a matrix with characteristic polynomial f (t).
The multiplicity of λ is the largest possible integer k for which (t − λ)k

is a factor of f (t).

Theorem
A is diagonalizable iff
i) The characteristic polynomial of A splits
ii) For each eigenvalue λ of A, the multiplicity of λ equals n− rk(A− λI ).
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Linear Transformations and Matrices Diagonalization

Example

1
A =


1 1

0 1 0
0 1 2


The cha


racteristic


polynomial of A is det(A− λI ) = (1− 2λ) (2− λ),

which splits and has eigenvalues λ1 = 1 and λ2 = 2 with multiplicities 2
and 1, respectively.
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Linear Transformations and Matrices Diagonalization

Example

Note that

3− rk(A− λ1I ) = 3− rk


0 1 10 0 0 =
0 1 1

 3− 1 = 2

so, from the last theorem, A is diagonalizable. We can also find the basis
composed of eigenvectors for 3R . To do so, we find the null space of
(A− λi I ) for i = 1, 2.
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Linear Transformations and Matrices Diagonalization

Example

For λ1 = 1, the corresponding nullspace isx 1 0 1 1 x1
x 3
2 x
3

  ∈ R :
x

0 0 0
0 1 1

 2

x3

 = 0


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Linear Transformations and Matrices Diagonalization

Example

This is the solution space for the system x2 + x3 = 0 and has a basis of

1 0
γ1 =

0
0

 ,
−1
1


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Linear Transformations and Matrices Diagonalization

Example

For λ2 = 2, the corresponding nullspace isx  
−1 1 1 x

 1

x2 ∈ 3R :  1

0 −1 0
x3 0 1 0

x2
x3

 = 0


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Linear Transformations and Matrices Diagonalization

Example

This is the solution space for the system x1 = x3 and has a basis of

γ2 =

10
1


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Linear Transformations and Matrices Diagonalization

Example

Let

γ =

10
0

 ,

0 1−1 , 0
1

  
1


Then γ is an ordered basis for 3R consisting of eigenvecto


rs of A.
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Linear Transformations and Matrices Diagonalization

Example

One can verify that A = PΛP−1 where


1 0 1

 
1 −1 −1

 
1 0 0

P = 0 −1 0 ,P−1 = 0 −1 0 , andΛ = 0 1 0
0 1 1

the


0 1 1 0 0 2



Note that columns of P are


the eigenvecto


rs corresponding


to the



eigenvalues, which are on the diagonal of Λ.

Xiao Yu Wang (MIT) Math Camp 2010 08/10 69 / 88



Linear Transformations and Matrices Diagonalization

Trace

Definition (Trace)

The trace of A, denoted tr(A), is the sum of the diagonal entries of A.

Properties:

1 tr(A) + tr(B) = tr(A+ B), for square matrices.
2 tr(cA) = ctr(A), c ∈ R, for square matrices.
3 If A is an m× n matrix and B is an n×m matrix, then
tr(AB) = tr(BA).
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Linear Transformations and Matrices Diagonalization

This yields the following useful theorem:

Theorem
Let A be an n× n matrix that is similar to an upper triangular matrix and
has the distinct eigenvalues λ1, ...,λk with corresponding multiplicities
m1, ...,mk . Then
a) det(A) = (λ1)m1(λ2)m2

k
· · · ( mλk ) k

b) tr(A) = ∑i=1miλi
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Inner Product Spaces

Inner Products and Norms

Orthonormal Basis and Projections

Symmetric Matrices
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Inner Product Spaces Inner Products and Norms

Definition (Inner Product)

Let V be a real vector space. An inner product on V is a function that
assigns, to every ordered pair of vectors x , y ∈ V , a real scalar, denoted
〈x , y〉, such that for all x , y , z ∈ V and all real scalars c , the following hold
a) 〈x + z , y〉 = 〈x , y〉+ 〈z , y〉
b) 〈cx , y〉 = c〈x , y〉
c) 〈x , y〉 = 〈y , x〉
d) 〈x , x〉 > 0 if x 6= 0
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Inner Product Spaces Inner Products and Norms

Example
When V = nR , the standard inner product is given by:

n

〈x , y〉 = x · y = ∑ xiyi
i=1

In terms of matrix notations: x and y are n-dimensional vectors, so they
can be written as n× 1 matrices and then the inner product is equivalent
to the matrix multiplication:

〈x , y〉 = x ′y
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Inner Product Spaces Inner Products and Norms

Example

Definition (Norm)

Let V be a vector space endowed with an inner product. For x ∈ V we
define the norm of x by:

‖x‖ =
√
〈x , x〉

Example
When V = nR , then ‖x‖ =

√
∑n
i=1 x

2
i is the Euclidean definition of

length.
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Inner Product Spaces Inner Products and Norms

Let V be a vector space endowed with an inner product. Then for all
x , y ∈ V and c ∈ R, the following are true:

‖cx‖ = |c | · ‖x‖
‖x‖ = 0 iff x = 0. In any case, ‖x‖ ≥ 0.
(Cauchy-Shwarz Inequality) |〈x , y〉| ≤ ‖x‖ · ‖y‖
(Triangle Inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖
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Inner Product Spaces Orthonormal Basis and Projections

Definition (Orthogonal/Orthonormal)

Let V be a vector space endowed with an inner product. Vectors x , y ∈ V
are orthogonal if 〈x , y〉 = 0. A susbset S of V is orthogonal if any two
distinct vectors in S are orthogonal. A vector x ∈ V is a unit vector if
‖x‖ = 1. Finally, a subset S of V is orthonormal if S is orthogonal and
consists entirely of unit vectors.

We say that an n× n matrix A is orthonormal iff its column vectors form
an orthonormal basis of nR . It should be clear that A is orthonormal iff
A′A = I (which implies that A′ = A−1 for orthonormal matrices; A′A is a
diagonal matrix for A orthogonal).
Example: standard basis of nR .
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Inner Product Spaces Orthonormal Basis and Projections

Theorem
Any subspace S of nR has an orthonormal basis.
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Inner Product Spaces Orthonormal Basis and Projections

Definition (Orthogonal Complement)

Let S be a nonempty subset of an inner product space V . We define S⊥

to be the set of all vectors in V that are orthogonal to every vector in S ;
that is, S⊥ = {x ∈ V : 〈x , y〉 = 0 for all y ∈ S}. The set S⊥ is called the
orthogonal complement of S .

It should be clear that S⊥ is a subspace of V for any subset S of V .
Examples

{0}⊥ = V and V⊥ = {0} for any inner product space V
If V = 3R and S = {e3}, then S⊥ equals the xy−plane
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Inner Product Spaces Orthonormal Basis and Projections

Theorem
Let W be a finite-dimensional subspace of an inner product space V and
let y ∈ V . Then there exists unique vectors u ∈ W and z ∈ W⊥ such that
y = u+ z. Furthermore, if {v1, ..., vk} is an orthonormal basis for W , then

k

u = ∑ ,
=1
〈y vi 〉 vi

i

Corollary

In the notation of the preceding theorem, the vector u is the unique vector
in W that is "closest" to y; that is, for any x ∈ W, ‖y − x‖ ≥ ‖y − u‖,
and this inequality is an equality iff x = u.

The vector u in the corollary is called the orthogonal projection of y on
W .
Using all of this, it is straightforward to find the ONB of W , but we never
do this in econ so I won’t go through the "formula", but it’s basically
normalizing stuff.

Xiao Yu Wang (MIT) Math Camp 2010 08/10 80 / 88



Inner Product Spaces Orthonormal Basis and Projections

Proof
We have y = u + z , where z ∈ W⊥. Let x ∈ W . Then u − x is
orthogonal to z , so we have

‖y − x‖2 = ‖u + z − x‖2 = ‖(u − x) + z‖2 ‖u − x‖2= + ‖z‖2

≥ ‖z‖2 = ‖y − u‖2

where the third equality can be shown to be true by applying the definition
of a norm and using the linearity of the inner product. Now suppose that
‖y − x‖ = ‖y − u‖ . Then the inequality above becomes an equality, and
therefore ‖u − x‖ = 0, and hence u = x . The proof of the converse is
obvious.�
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Inner Product Spaces Orthonormal Basis and Projections

Application: Ordinary Least Squares Regression (OLS)
Consider a vector of explained data y ∈ n and vectors x x ∈ nR 1, ..., m R of
explanatory variables. Here, n is the number of observations; usually
n >> m. In OLS we look for a linear combination of explanatory data that
is closest to the explained data. It is given by a projection of y on the
subspace of nR spanned by the explanatory variables. The coeffi cients on
the explanatory variables in the projected vector are called the regression
parameters.
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Inner Product Spaces Orthonormal Basis and Projections

Diagonalization and Symmetric Matrices

Theorem
Let A be an n× n symmetric matrix. Then A is diagonalizable on an
orthonormal basis of eigenvectors and all of the eigenvalues are real.
Hence, A can be expressed as A = QΛQ ′ where Q is an orthonormal
matrix and Λ is a diagonal matrix.
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Inner Product Spaces Orthonormal Basis and Projections

Definition (Idempotent Matrix)

A n× n matrix A is said to be idempotent if MM = M.

Theorem
A symmetric idempotent matrix has eigenvalues equal to either 0 or 1.

Proof
Let λ be an eigenvalue of a matrix A. Then Ax = λx . Therefore,
λx 2= Ax = AAx = Aλx = λAx = λ x . Since x is nonzero and λ is real,
it follows that λ can only be 0 or 1.�
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Definiteness

Let A be an n× n matrix and x ∈ nR . Then

x ′Ax = ∑ aijxixj
i ,j

is a quadratic form. Note that x ′Ax is a scalar. Therefore it follows that
x ′Ax 1= x ′A′x such that we can write x ′Ax = 2x

′(A+ A′)x whereA+A
′

2 is
symmetric. Thus, assume, without loss of generality, that A is symmetric.
Then A is

positive (negative) definite if x ′Ax > (<)0 ∀x 6= 0.
positive (negative) semidefinite if x ′Ax ≥ (≤)0 ∀x
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Definiteness

Theorem

For any matrix A, A′A is positive semidefinite.

Proof
Let y = Ax . Then x ′A′Ax = y ′y = ∑n

i=1 y
2
i ≥ 0.�

Theorem
A positive definite matrix is nonsingular.

Proof
Assume that A is positive definite and singular. Then there exists an
x 6= 0 such that Ax = 0. But then x ′Ax = 0 which contadicts that A is
positive definite.�
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Definiteness

Theorem

If A is m× n matrix with m ≥ n and rk(A) = n, then A′A is positive
definite.

Proof
Let y = Ax and observe that Ax is zero only if x = 0 because A is of full
column rank n. Then for x 6= 0, y 6= 0, so x ′A′Ax = y ′y > 0.�
Theorem
Any symmetric matrix with strictly positive eigenvalues is positive definite.
Any symmetric matrix with nonnegative eigenvalues is positive
semidefinite.

In particular, any symmetric idempotent matrix is positive semidefinite.
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Definiteness

A Determinantal Test of Definiteness
For any T × S matrix M, we denote by tM the t × S submatrix of M
where only the first t ≤ T rows are retained. Similarly, we let Ms be the
T × s submatrix of M where only the first s ≤ S columns are retained.
Finally, we let tMs be the t × s submatrix of M where only the first t ≤ T
rows and s ≤ S columns are retained. Also, if M is an N ×N matrix, then
for any permutation π of the indices {1, ...,N} we denote by Mπ the
matrix in which rows and columns are correspondingly permuted.

Theorem
Let M be an N ×N symmetric matrix.
i) Then M is negative definite iff (−1)r |rMr | > 0 for every r = 1, ...,N.
ii) Then M is negative semidefinite iff (−1)r |rMπ

r | ≥ 0 for every
r = 1, ...,N and for every permutation π of the indices.
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