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Lecture

Structural VARs

1. Goals & Assumptions

This lecture is about applied Macroeconomics. This is not a course about macroeconomics, so we won’t
have too much to say about the correctness of various macroeconomic assumptions. However, we will try to
clearly separate econometric issues from macroeconomic ones.

History

Sims (1980) “Macroeconomics and Reality” introduced VARs. It is largely a philosophical paper. The com-
mon practice at the time was to estimate very large macro-models with many equations and many restrictions.
Sims argued that these restrictions were often unrealistic. Sims introduced VARs as an alternative.

Goals of VAR analysis

• Estimate causal relations – eg. how does monetary shock affect output?

• Perform Policy analysis – eg. how should fed adjust interest rate to get the prescribed change in GDP?

• Test economic theories – eg. test RBC against Neo-Keynesian models as in problem set. RBC implies
that a permanent shock to labor productivity should cause hours to go up. Neo-Keynesian implies the
opposite.

• First step in DSGE estimation of deep parameters – eg. estimate VAR in real data, and match these
estimates with the theoretical ones to recover the structural parameters.

Plan of VAR analysis

1. Estimate by OLS A(L)Yt = et, a V AR(p)

2. Invert VAR to get MA(∞),

Yt = C(L)et

3. Impose identification assumption to find a matrix D such that Dut = et where ut are orthonormal, i.e.
Eutu

′
t = It, serially uncorrelated, and have structural interpretation (a.k.a “can be labeled as shocks”).

4. Compute impulse responses from Yt = C̃(L)ut, where C̃j = DCj
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2. Assumptions behind VAR

• Stationarity (no regime-switching) – all parameters are stable. This is important and tricky for policy
analysis. The Lucas critique says that if you change policy, people will change their expectations and
their behavior, so the coefficients of your VAR might change.

• Linearity

• Finite-order VAR
Some people argue that it is not important that the true model has a finite-order VAR. They say that
you can always add more lags as your sample size increases. However, in practice, people typically use
fairly few, often 4, lags in estimation. Given the size of available data, we can’t use many more lags.

• Forecast errors, {et}, span the space of structural shocks – this is an economic assumption, which we
can use theory to think about.

3. Identification

Now, let’s start thinking about identification. From our OLS regression we get “forecast errors” et with
variance-covariance matrix ′ = Ω, which is by symmetric and positive-definite and has k(k+1)Eetet k k 2
unique parameters. We wish to recover ut which we can label as “structural shocks”. They relate to et by
linear transformation: et = Dut. We usually automatically impose two type of assumptions: 1) structural
shocks are orthogonal to each other; 2) normalization (say variances of shocks are equal to1). This implies
that D must satisfy DD′ = Ω. D is a k × k matrix, so it has k2 free parameters. Therefore, calculating the
number of free parameters and the number of restrictions we will need k(k−1)

2 identification restrictions.
Identification can be achieved by two general types of restrictions, short and long run.

3.1 Short-run Restrictions

One type of short-run restrictions is called “world ordering” and based on ordering variables in VAR according
their speed of reaction to different shocks.
Example 1. Suppose we have three variables in the vector Yt: prices pt, output yt and money mt for which
OLS residuals (forecast errors)are p yet , et and emt . We wish to find matrix D that would lead us to structural
shocks (there will be three of them) p yut , ut and umt . You may label them, say, call umt as “monetary shock”
and yut as “supply shock”. In general, pet

   p? ? ?


ut
yet = y? ? ? ut
emt ? ? ? umt



Let’s assume that monetary shock can


influence

 
output only


with


lag


(i.e. immediate response of output to

monetary shock is zero):  pet
yet
emt


=

 p? ? ?   t

? ? 0


u yut

? ? ? umt



Now, let’s impose an assumption in Keynsian tradition that prices are


sluggishly responding to all shocks

but their own:  pet
yet =
emt

  p? 0 0   ? ? 0
? ? ?


u



Three “exclusion” restrictions is what we need in this example

 t
yut

umt

for iden


tification.
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More generally, “world ordering” leads to the case of triangular D . One way of estimating D is to find
D by Choleski decomposition of Ω.

3.1.1 Treating exclusion restrictions as instrumental variable.

Even though performing Choletski decomposition is easy, it is useful to think about different method for
implementing structural restriction, namely, as GMM moment conditions (or IV regression in this case).
Remember, what we have:

Yt = A1Yt 1 + ...+ApY− t ;−p + et et = Dut;

that is,

D−1Y = D−1A Y + ...+D−1
t 1 t−1 ApYt−p + ut = B1Yt 1 + ...+BpY− t +−p ut, (1)

where Bi = D−1
∗ 0 0

Ai. We imposed the identification condition that D =


∗ ∗ 0


is a lower diagonal

∗ ∗ ∗
matrix. But then D−1 is also a lower diagonal matrix, assume that dij are


elements of


D−1. Then equation

(1) means that 
d 11pt

d12pt + d22yt

 = B1Yt−1 + ...+BpYt−p + ut,
d13pt + d23yt + d33mt

with additional assumptions that ut are not auto-correlated over time and different of ut are nt correlated with
each other either. There is also normalization assumption that V ar(ut) = I3. This suggests an estimation
plan:

Step 1. Run OLS of , ppt on Yt 1, ..., Yt p get residuals ûpt , re-normalize by defining d =− 11 1/ 1
T t(û− t )2, and

p put = d11ût (this imposes variance 1).

√ ∑
Step 2. We wish to run a regression of yt on pt and Yt 1, ..., Yt p. Unfortunately OLS does not work in this case,− −

since pt is endogenous(!!!). But we have an instrument: put (think why this is a good instrument! is it
correlated with pt? is it uncorrelated with yut ?). So we run IV regression of yt on pt and Yt−1, ..., Yt−p
with instrument put for pt. We get preliminary coefficient a on regressor pt. Find the residuals from

the IV regression and re-normalize everything to impose ( y) = 1. Namely = 1 1 (ˆyV ar ut d22 / T t ut )2,
y yut = d22ût , d12 = −ad22.

√ ∑
Step 3. We want to regress mt on pt, yt and Yt 1, ..., Yt p. Now we have two endogenous regressors: yt and p

p
− − t

and two instruments ut and yut . Proceed in a fashion similar to step 2.

As an output of the above procedure we have a series for ut, matrix D−1 and B1, ..., Bp. To get impulse
responses we may just invert VAR as before, or go alternative way: we may regress Y ˜

t on ut−j and get Cj
as OLS coefficients (argue why it should work!).

3.1.2 Puzzles

Another way of imposing short-run restrictions is if one know some constant relations. For example, govern-
ment spending is affected by output shock only through taxes (if you assume that all taxes are spent every
period). If you know the marginal tax rate, you can impose this constant.

In the past, many people wrote papers that used VARs to identify various puzzles. Among known puzzles
is so called price puzzle:

• Run a VAR with Yt = (it, πt)′, where it is the federal funds rate and πt is inflation
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• Identification: define a monetary shock as an unexpected change to federal funds rate, that is umt = eit,
or (

umt
u2
t

)
0

=
(
∗ t

∗

)(
ei

∗ eπt

)
• What you can find after producing impulse responses is: the drop in federal fund rate (positive monetary

shock, money easining) leads to inflation fall rather than rise! This is the opposite direction from what
we’d think!

Sims explained this by saying that the Fed uses many other variables when choosing the federal funds rate.
When these variables pointed to an increase in inflation, the Fed would raise the rate to fight the inflation
(negative monetary shock). Then inflation increases (although presumably by less than it would have if the
Fed had not increased the rate), and it looks like a contraction in the monetary supply caused an increase
in inflation. Remember our discussion on rational forcasts and forward looking expectations? It may look
like reverse causality.

A potential solution to this would be to add more variables to your VAR. However, the number of
parameters to estimate is the number of lags times the squared number of variables. This will quickly exceed
the length of available data. A more practical solution is factor analysis, which will be covered next lecture.

3.2 Long-run Restrictions

Introduced by Blanchard and Quah (1989). They did a VAR with two variables, first difference of output
and unemployment, that is, Yt = (∆yt, ut)′:

∞

Yt = A1Yt−1 + ...+ApYt C−p + et; thus Yt =
∑

jet−j
j=0

They had two shocks, one that they called a supply shock and another that they called a demand shock.
Let’s denote the supply and demand shocks as vst and vdt . That is

et = D

(
vst
d

) )
s

;
(

∆yt
∞

v
= C

v ut

∑
j=0

˜
j

t

(
t−j
vdt−j

)
,

where C̃j = CjD. Identification comes from the assumption that only supply shocks can have a permanent
effect on output. Additionally, both shocks only have temporary effects on unemployment (this is implicitly
imposed by the fact that we estimate the VAR with unemployment in levels). Assume for simplicity that

˜
C̃j =

[
(1)
cj .
c̃
(2)
j

]

Consider the impulse response of yt to
[
vst j
d
−
]
. We know yt = yt 1 + ∆yt = yt j + j ∆

t−j
− −

∑ −1

v i=0 yt−i, so

j
∂yt

∂

[
vs

= c̃
(1)
j

t
d
−j

j

] ∑
i=1

vt−
∞

→
∑

c̃
(1)
j

i=1
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Our identification restriction is that ∑∞
c̃j =

[
j11 0
j21 j22∑ i=1

]
Note that ∞

c̃ = (
∑∞

C )D = C(1)D = (I −A(1))−1 j
i=1 j i=1 j 2 D, where C(L) =

∑
CjL = (I −A(L))−1,[ ] j

∆yt = A(L)
ut

[
∆yt−1

ut−1

]
+ et

is VAR regression. So, the plan is as follows

Step 1 Run OLS regression Yt = A1Yt−1 + ... + ApYt−p + et, get OLS coefficients A1, ..., Ap and variance of
the residuals Ω

0
Step 2 Find D such that ( p

I2 −
∑
j=1Aj)

−1D =
(
∗
∗ ∗

)
and Ω = DD′.

3.2.1 Implementing long-run restriction as IV

This identification problem however can also be resolved as an IV regression. Again the problem is

Yt = A1Yt + ...+A Y + e ; e = Dv(−1 p t−p t t t

with the restriction (I −
∑p
j=1Aj)

−1D =
∗ 0

)
and Ω = DD′.

Let us re-write it as
∗ ∗

D−1Yt = D−1A1Yt 1 + ...+D−1A− pYt−p + vt

or

B0Yt = B1Yt−1 + ...+BpYt−p + vt, (2)

where B0 = D−1 and Bi = D−1Ai. Let B(L) = B0 − B1L − ... − BpLp. We have that our identifying
condition is ∑p p

B(1)−1 = (D−1(I − Aj))−1 = (I −
∑

Aj)−1 0
D =

( ) j

(
∗

,
j=1 =1

∗ ∗

)
∗ 0

(
1 α

)
p

(
β(L) γ(L)

which is equivalent to B(1) = . Or if B0 = and B1L+ ...+B∗ ∗ ∗ ∗ pL = ∗ ∗

)
,

then the identifying condition

In our case Yt =
(

∆yt
) is α− γ(1) = 0.

. Let us write the first equation in (2):
ut

∆yt + αut = β1∆y s
t ,−1 + ...+ βp∆yt + γ u + ...+ γ u + v−p 1 t−1 p t−p t

So, we would love to run a regression

∆yt = −αut + β1∆yt 1 + ...+ β− p∆yt−p + γ1u
s∑ t−1 + ...+ γput−p + vt ,

but we also need to impose the restriction α− p
i=1 γi = 0. This gives us

∆yt = β1∆yt−1 + ...+ βp∆yt−p − γ1(ut − ut−1)− ...− γp(ut − ut−p) + vst .

Now notice that ut − ut 1 = ∆ut, ut − ut 2 = ∆ut + ∆ut 1, ..., ut − ut p = ∆ut + ...+ ∆u .− − − − t−p+1 Then our
regression with the imposed restriction is

∆yt = β1∆yt 1 + ...+ βp∆yt p − γ̃1∆u− − t − ...− γp∆ut−p+1 + vst , (3)

where γ̃1 = γ1 + ...+γp, γ̃2 = γ2 + ...+γp, etc. The problem of running
∆ut is endogenous, the idea is to use ut , ..., ut−p as instruments. Once−1

t̃he regression (3) is that the regressor
one runs (3) as an IV regression,

he gets residuals vst that can be used as instruments on the second equation: which is a regression of ut on
∆yt and p lags of both ut and ∆yt.
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Examples

• King, Plosser, Rebelo, and Watson (1991) – long-run money neutrality

• Gali (1999) – technology shock is the only shock that has a permanent effect on productivity.

Critiques of long-run restrictions

• Faust and Leeper (1997): Long-run effect is badly estimated in finite samples. Long-run restrictions
transfer this uncertainty to other parameters.

What assumptions do we need to estimate a long-run effect from a finite sample?

– If we know that the process is AR(p), then we can consistently estimate ∞
t=1 Ct = (1− p

j=1Ap),
where Aj are autoregressive coefficients.

– What if we think that AR(p) is only an approximation, and∑the true

∑
process is AR(

∑
∞)? If

the process is some general MA(∞), then we cannot estimate ∞
t=1 Ct consistently because we

could always have CT+1 large (more formally Faust and Leeper get a “nearly observationally
equivalence” ). Another way to see this is that if we have some arbitrary AR(∞), a(L) and we
approximate it by ã(L) of order p, then we can consistently estimate a(L) by ã(L) by letting
p → ∞ slowly, but the long run effect is a(1)−1, is not a continuous function of a(L) in L2, so
ã(1)−1 need not be close to a(1)−1.

There are two solutions to the problem: either to stick to the belief that the true process is AR(p), or
we re-define “the long run” as say ten years.

• Another critical paper is Cooley and Dwyer (1998). They simmulated data with very persistent AR
parameter and did long-run structural VAR estimation on it. They showed that the result may be
highly misleading. The reason for this is that unit root is discontinuity point for long-run restriction.
For IV type of estimation it corresponds to weak IV.

• More recent critique is in Chari, Kehoe, and McGrattan (2005). they simulated data from a model
with a V AR(∞) representation with slowly declining coefficients, and showed that estimating an SVAR
with long-run restrictions from this model gives misleading inferences.

• Christiano, Eichenbaum, and Vigfusson (2006) replied to the paper above in two ways: 1) they showed
that the model of Chari, Kehoe, and McGrattan is not relevant and is strongly rejected by the data. 2)
Additionally, they show that if you use a Newey-West type estimator to estimate the long-run response,
the VAR works much better, even for the model of CKM.
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