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Factor Models Part 2

Summary of FAVAR

Take the same model as last time:

xit =λi(L)ft + δi(L)xit−1 + vit (1)
ft =Γ(L)ft 1 + η− t

Step 1: estimation

The space spanned by the factors ft is consistently estimable, i.e. there exists an invertible H such that

|| p
f̂t −Hft||2 → 0

We estimate f̂t in two steps:

1. Static factors: Estimate static factors Ft, which is size r × 1, with r ≥ q (ft is q × 1) by iterations:

(a) pick δi(L)

(b) let x̃it = (I − δi(L)L)xit

(c) principal components (eigenvectors corresponding to largest eigenvalues) of x̃it give F̂

(d) Regress xit on its lags and F̂ to get a new δi(L)

(e) repeat until convergence

2. Dynamic factors: the static factors evolve as:

Ft = Φ(L)Ft−1 + εt

where εt = Gηt and εt is r × 1, G is r × q, and ηt is q × 1, so the variance-covariance matrix of εt is
not full rank. Two ways to estimate space spanned by ηt:

• Observe

xit =λiΦ(L)Ft + δi(L)xit−1 + εxit

εxit =λiGηt + vit

so regress xit on its lags Ft and lags to get residuals, ε̂xit. Take the q principal components of
ε̂xε̂
′
x to estimate the space spanned by η

• Observe : Ft = Φ(L)Ft 1 + εt and εt = Gη ε̂− t. Take the q principal components of ε̂F
′
F
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Step 2: reduced form MA 2

Step 2: reduced form MA

We can write the model in MA form as:

xt = B(L)ηt + J(L)vt

We can get this representation in two ways: either formally inverting model (1) or by regressing xit on lags
of η. Note that B is identified up to linear transformation (as well as shocks): we could replace B(L)ηt with
B(L)AA−1ηt for any invertible A without changing the observed xt. Just like SVARs, we need to choose an
H for identification.

Step 3: Structural Analysis.

Partial (block) identification: Structural analysis is mainly done by timing restrictions. For example,
assume that monetary shock is identified as follows. All variables divided into 3 groups: slow moving(react to
monetary shock with a lag), fast moving (react to monetary shock immediately) and interest rate (transferring
variable), arrange them from slow to fast. Often implausible to specify a full ordering, but suppose can
identify variables into three groups:

• slow – investment, GDP, unemployment; say ns of them

• fast – prices, exchange rate; nf of them

• identifying – interest rate; 1 of them

Assume there are ns slow variables, and nF fast ones, n = nS + nF + 1. Divide also shocks in to qS shocks
to slow, qF shocks to fast, and monetary shock (q = 1 + qS + qF ).

Then the identifying assumptions are:

BS
∗

S 0 0
B0
∗ =


BR
∗

S BR
∗

R 0
BF
∗

S BF
∗

R BF
∗

F



here B∗0 is n

 
× q.

Or we have a system

εS
t = BS

∗ S
SASηt + vt (2)

εR
t = BR

∗
SASηt +B R

R
∗

RARηt + vt (3)

εF
t = BF

∗
SASηt +BF

∗ F
RARηt +BF

∗
FAF ηt + vt (4)

here εS
t is reduced form error to slow variables in regression of each slow variable Xi

t on its own lags and Ft.
In the same way we receive εR

t and εF
t - reduced form errors to Fed rate and fast variables. ηt- reduced form

shock to dynamic factors(recovered before), ARηt = ξR
t is monetary shock, A S F

Sηt = ξt and AF ηt = ξt are
slow and fast shocks (they are identified as sets, not labeled personally).

What can we do to recover ξt and B∗? It’s called “reduced rank regression”.

Reduced rank regression Let’s observe yt and xt, t = 1...T such that

yt = αβ′xt + et

where yt is n-dimensional, while xt is k dimensional, β is k × q-matrix, α is n × q matrix, and q < k. The
idea is that the set of n variables yt is spanned not by all xt but by a q dimensional linear combination of
them β′xt.
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Let S be a set of sample covariance matrices. Define··

S 1
yy.x = Syy − SyxSxx

− Sxy.

Find q eigenvectors { }q corresponding to largest eigenvalues of matrix −1/2
Vi i=1 Syy.x SyxS

−1 1
xx SxyS

− /2
yy.x . Then

α = S1/2 1
yy.xV, β = Sxx

− S 1
xyS

− /2
yy.x V, V = (v1, ..., vq)

Back to structural estimation

̂
So we

̂
have system (2)- (4).

• First we do reduced rank regression of εS
t on ηt imposing rank qS . The resulting β̂ gives us the set of

slow shocks ξS
t = βηt.

• By definition ξR R R S
t =

̂
P̂ (εt |ηt)− P̂ (εt |ξt )- monetary shock is a part of factor innovation unexplained by

slow shocks

• We run regression of εR
t on ηt, get the explained part, then run regression of εR

t on ξS
t , get the explained

part. Define monetary shock as the difference between the explained parts.

Remark 1. Impulse response of any variable to monetary shock can be found by regressing left-hand variables
on our reconstruction of monetary shock.

Number of Factors

• Static Factors: Information Criteria

log σ̂2
k + kCNT

where CNT → 0 and min
log(min N,T )

{N,T}CNT → ∞ as both T → ∞ and N → ∞. Bai and Ng suggest
CNT = { }

NT/(N+T )

• Dynamic Factors: Compute covariance matrix of ut = Rεt and look at eigenvalues – only q should
be non-zero in population. Bai and Ng (2005) discuss how to choose q in samples. The idea is to
estimate covariance matrix of ut and let c1 ≥ c2 ≥ ... ≥ cr ≥ 0 be eigenvalues. We need to define where
to say that eigenvalues are small enough to assume that they are zeros. One may consider statistics of
the form

1/2

D

(∑c2= k+1
k,1 r

j=1 c
2
j

)
or

Dk,2 =

 1/2
r c2j

r
j=1 c

2
jj=k+1

∑
in population they should be 0 for any k >


q. The

∑
suggestion


is to choose q̂ as minimal k for which

Dk,i <
m

min{N1/2−δ,T 1/2−δ . The formal statement is that for any m > 0 and δ ∈ (0, 1/2) the estimate}
of q is consistent. A practical suggestion is to take m ≈ 1 and δ close to 0.
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Factor IV

We will motivate this with an example. Suppose inflation is given by a Philips’ curve:

πt = γfEtπt+1 + γbπt−1 + λxt + εt

where xt might be a proxy for marginal costs, say the output gap. The usual way to estimate Phillips curve
is IV. That is, to use instruments zt such that:

E [zt(πt − γfπt+1 − γbπt−1 − λxt)] = 0

and estimate β = [γf γb λ] by GMM. The requirements for exogeneity of zt is that it belongs to information
set available at time t (measurable with respect to Ft).However, there are many candidates for zt, lags of
inflation, various price indices, and other variables and their lags. We have a problem because we have
many/weak instruments. Newey and Smith(2004) show that bias of GMM is linear in the number of over-
identifying restrictions. We could throw out some of the instruments, but then we’ll lose some information.
And the estimation of Phillips curve usually show weak identification (means information is valuable).

The following idea is in Bai and Ng(2006). If we assume a factor model as before, that is, there are just
few structural shocks that span the space of macro variables, then the factors can be our instruments. That
is, assume that

yt = β′xt + εt

is a regression of interest and all regressors can be divided in to two groups: xt = [x1t x2t]: x1t are exogenous,
x2t are endogenous (E[x2tεt] = 0). The method of estimation is IV, and there tons of instruments zt. We
assume a factor structure:

zit =λ′iFt + eit

E[eitεt] =0
x2t =φFt + ut

E[utεt] = 0

In this model zit would be valid instruments. However, if the variance of eit is large relative to the variance of
λ′iFt, then zit would be weak instruments, while Ft would be a good instrument. This suggests the following
FIV procedure:

1. Estimate F̂ as eigenvectors of zz′

NT

2. Do IV with F̂ as instruments

Results
√

• If T
N → 0 as N,T → 0, then the asympototic distribution of β̂FIV is the same as if we observed F

(Bai and Ng 2006)

• Let we run a regular IV using any subset of instruments zt and get β̂IV , then the asymptotic variances
have the following order:

AV ar(β̂FIV ) ≤ AV ar(β̂IV )

Factor models in Finance.

Refer to Kleibergen (2010) “Reality checks for and of factor pricing”.
Many theories of stochastic discount factor results in a statement that portfolio returns exhibit a (unob-

served) factor structure (starting from Merton (1973) and Ross (1976))

rit = µi + βi1f1t + ...+ βikfkt + εit = µi + βiFt + εit, i = 1, ..., N ; t = 1, ..., T (5)
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Factor models in Finance. 5

here Ft = (f1t, ..., fkt)′ is k × 1 vector of factors at time t and βi is 1 × k factor loadings for portfolio i, εit

is idiosyncratic disturbances.
Empirically, in many data sets on quarterly return of different portfolios people find around 3 factors.

Example, for the data set on 25 book-to-market sorted portfolios from Ken French’s web-site (N = 25, T =
200) 3 principle component explains 25% variation. Another example is Jagannathan and Wang set of
monthly returns of 100 portfolios (T = 330, N = 100), the first 3 principle components explain 86% of
variation.

There is a long list of empirical papers suggesting a set of observed factors that explains portfolio
returns. That is,

rit = µ̃i +BiGt + eit (6)

where Gt = (g1t, ..., gmt)′ is m × 1 vector of observed factors. Examples of such papers: Fama and French
(1993)- where factors are market portfolio, “small-minus-big” (the difference in returns between portfolios
of stock with small vs large market capitalization) and “high minus low”(the difference in returns between
portfolios of stocks with high vs low book-to-market ratios). Another example, Lettau and Ludvigson
(2001)- where factors are market portfolio, the consumption-wealth ratio (cay), consumption growth and
income growth.

Stochastic discount factor models imply that

Erit = λ0 +BiλG,

where λG is m× 1 vector of factor risk premia, while Bi is 1×m factor loadings for portfolio i (corresponds
to risks associated with the factors). To estimate factor risk premia, there exists a two-pass procedure,
sometimes called Fama-MacBeth method:

1. For each portfolio i run a time series regression of rit on Gt to uncover coefficients Bi (estimates called
B̂i):

1T

ˆ
i =

∑ T −

B rit(Gt −G)′

=1

(
(Gt

t=1

−G)(Gt −G)′

t

)
,

where G = 1 T

∑
T

∑
t=1Gt.

2. Regress average(over time) returns ri = 1
T

∑T
t=1 rit on constant and B̂i to get λ’s (factor risk premia)

Problem set 2 contains a problem that discusses this procedure in detail.
To demonstrate the adequacy of the suggested observed factors, researchers usually report second pass

R2 and t-stats for λ’s. A large value of R2 is typically seen as an indicator that the observed factors explain
a large part of the variation of the average portfolio returns. The logic is based on the following theoretical
and simulation exercise: imagine that the returns have unobserved factor model (5) with 3 factors, but you
are trying to fit observed factor model (6) where your observed factors Gt will be exactly equal to: (i) first
true factor f1t, (ii) two first factors f1t, f2t and (iii) to all true factors Ft. If you simulate situations (i)-(iii),
you will see that the distribution of R2 is in case (i) is strictly to the left from that in case (ii), and they
bothe strictly to the left of that in case (iii).

A new paper by Kleibergen(2010) shows that despite of this, R2 is a bad indicator of the adequacy of
the observed factor structure. He simulate a situation when observed factors Gt have nothing to do with the
true unobserved factors Ft and calibrated this situation to a typical asset pricing setup. He showed that R2

has a non-trivial distribution that has a big chanc of probability located on large values of R2 (close to 1).
This might be called a “spurious factor structure”. He also demonstrated that the second run t-statistics
are very misleading as well in this case.

Can you see if the factor structure you find is spurious? Kleibergen suggests to look at the residuals eit

and check whether they have significant remaining factor structure, if they do, the results you are getting are
likely misleading. Kleibergen showed that Fama-French likely correspond to a relevant factor structure, while
many other empirical asset pricing factor models are spurious (including Lettau and Ludvigson (2001)).

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

http://ocw.mit.edu


MIT OpenCourseWare
http://ocw.mit.edu
 
 
14.384 Time Series Analysis
Fall 2013
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Summary of FAVAR
	Step 1: estimation
	Step 2: reduced form MA
	Step 3: Structural Analysis.

	Number of Factors
	Factor IV
	Factor models in Finance.



