Introduction 1

14.384 Time Series Analysis, Fall 2007
Professor Anna Mikusheva
Paul Schrimpf, scribe
October 18, 2007

Lecture 16

Empirical Processes

Introduction

References: Hamilton ch 17, Chapters by Stock and Andrews in Handbook of Econometrics vol 4
Empirical process theory is used to study limit distributions under non-standard conditions. Applications
include:

1. Unit root, cointegration and persistent regressors. For example if y; = py;—1 + €4, with p = 1, then
T(p — 1) converges to some non-standard distribution

12 + e t S T
pt+kte t>T1
Want to test Hyp: no break & = 0 with 7 being unknown. A test statistic for this hypothesis is

S = max; |t.| where ¢, is the t-statistic for testing k = 0 with the break at time 7. S will have a
non-standard distribution.

2. Structural breaks at unknown date (testing with nuisance parameters). For example, y; =

3. Weak instruments & weak GMM.
4. Simulated GMM with non-differentiable objective function — e.g. Berry & Pakes

5. Semi-parametrics

We will discuss 1 & 2. We will cover simulated GMM later.

Empirical Process Theory

Let x; be a real-valued random k x 1 vector. Consider some R™ valued function g;(x:,7) for 7 € ©, where
O is a subset of some metric space. Let

T
1

&r(t) = —= ) (9@, 7) — Egi(x,7))

&p(7) is a random function; it maps each 7 € © to an R" valued random variable. &7(7) is called an
empirical process. Under very general conditions (some limited dependence and enough finite moments),
standard arguments (like Central Limit Theorem) show that {r(7) converges point-wise, i.e. V15 € ©,
&r(m0) = N(0,0%(0)). Also, standard arguments imply that on a finite collection of points, (71, ..., 7p),

§r(m)
: = N(0,%(1, .+, 7)) (1)

&r(7p)

We would like to generalize this sort of result so that we talk about the convergence of &7() as a random
function in a functional space. For that we have to introduce a metric in a space of right-continuous functions.

We define a metric for functions on © as d(b1, b2) = sup,cg |b1(7) —b2(7)|. Let B = be a space of bounded
functions on ©, and U(B) = be a class of uniformly continuous (wrt d()) bounded functionals from B to R.

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].


http://ocw.mit.edu

Functional Central Limit Theorem 2

Definition 1. Weak convergence in B: &r = £ iff Vf € U(B) we have Ef(ér) — Ef(§) as T — oo.
Definition 2. £ is stochastically equicontinuous if Ve > 0, Vi > 0, there exists § > 0 s.t.

TILH;OP( sup 5\§(T1) —&(r)| >m) <e

|71 —T2|<
Theorem 3. Empirical Processes Theorem: If
1. © is bounded
2. there exists a finite-dimensional distribution convergence of &1 to & (as in (1))
3. {&r} are stochastically equicontinuous
then & — €

Condition 2 is usually easy to check checked. Main difficulty is usually in checking condition 3.

Remark 4. Stochastic equicontinuity is equivalent to:

V{dr}:0r — 0 sup  |&(m1) —&(m2)| =P 0

|71 —T2| <67

Theorem 5. Continuous Mapping Theorem: if & = &£, then Y continuous functionals, f, f(&r) = f(§)

Functional Central Limit Theorem

Let ¢; be a martingale difference sequence (i.e. E(ee;—1,...) =0 Vt) with E(e7|I;_1) = 02, Fe} < oo.
Define

(T'7] T T
1 1 1
{r(t) = —= Z € = —= Z loy<irye = —= th(% 7)
VT t=1 VT t=1 VT t=1
Consider some 7q:
[T'7o]
TTO 1
§r(mo) = T I ; €t
Standard Central Limit Theorem implies that \/”}To 7[52?] et = N(0,0?), so

&r(1o) = N(O, 027'0)

Similary, if we consider the joint distribution of &r(m9) and &r(m) — &r(70). These will be two non-
overlappping sums of €;, so we have:

fT(Tf)T(—TOE)T(To) } =N (07 [ 70(372 (11 —070)0'2 D

We can generalize this to any finite collection {7;}.
Definition 6. Brownian motion or Weiner process is a stochastic process, W (), such that
1. W(0)=0

2. For 0 < t; < ... < tx < 1, the increments, W(ts) — W(t1),...., W(tx) — W(tg—1) are independent
Gaussian with W (t) — W(s) ~ N(0,t — s) for t > s

3. W (t) is almost surely continuous

The Functional Central Limit Theorem implies & = oW. (Surely, one has to prove stochastic equicon-
tinuity, which happens to be true here).

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].


http://ocw.mit.edu

Unit Root 3

Unit Root

Let y¢ = pyi—1 + €¢; and p = 1(unit root process). The asymptotic behavior of y; are very different from that
of a stationary time series (or just autoregressive processes with |p| < 1). For example, &7 (7) = ﬁy[TT] =

oW () as a stochastic processes, while for x; = pxi_1 + e, |p| < 1, we have%x[TT] —P 0. Another

observation: % Ex; = 0 for a stationary process, while for a random walk, g/ VT has a non-degenerate
asymptotic distribution:

1 & 1 <&y
—— It
DN PN
1 T
Zfng(t/T)
t=1

— /01 Er(s)ds = 0/01 W (t)dt

where we used the continuous mapping theorem in the last line. Integration is a continuous functional.
Similar reasoning shows that:

T 1
T*H/szf:»ak/ W*(s)ds (2)
t=1 0

Now, let us consider a distribution of OLS estimates in an auto-regression (regression of y; on y;—1). In
the stationary case, we have:

=Y 7€ N(0, %)
A _ VT 1—p
VIO =P = — = )

Now let’s consider a non-stationary case. The asymptotic distribution of p — 1 will be given by the
T'S ye_1e
T ye—1Ye—1
will become clear after working with the expression a little bit. Let’s examine the numerator and denominator

of this expression separately. For the numerator,

= N(0,1—p%)

distribution of . We write T? because we’re not yet sure of the rate of convergence. The rate

T T T
E Yi—1€r = E eler+ ... +e1) = E €t€s
t=1 t=1 t=1,s<t
Lo I
—2yT ~ 3 €t
since,
T T
2 2 2
yT:(E €t) ZE € +2 Et€s
t=1 t=1 t=1,s<t

If we scale the numerator by 1/7, then we have:

1 1 1 11
T Zyt—lﬁt :§(ﬁyT)2 9T Zef
=5 (1) - &)
%(W?(l)a2 —0%) = %UQ(WQ(U -
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Unit Root 4

If we scale the denominator by 1/72, then we know from (2) above that 2=yl = fo s)%ds. Thus,
P51 AT -1
fo W (s)2ds

Using It6’s lemma, we can modify this slightly.

Lemma 7. 1to’s lemma Suppose we have a diffusion process, S
Ss = / atdW / btdt

dsS = atdW + btdt

or, informally,

Let f be a three times differentiable function, then df (S) is
1
df(S) = f'(ardW + bydt) + 3 f"(aZdt)
which means that
150 = [ faaw o+ [ " g
0

In our application, S = W = [dw, f(z) = 22, f'(z) = 2z, and f"(z) = 2. Applying It6’s lemma we
have:

d(W?2(t)) = 2wdw + %th

This means that

S0,

Thus, we have:

LW2(1) —1) [y W(s)dW(s)

Tp—1)= =3 ="
Jo W(s)2ds Jo W2(s)ds
Notice that:
T
1 Yr—1 Dyt
P~ E Yt—1€t =
Tt:l - VI VT

- / Er(s)der(s)
1
= /O W (s)dW (s)

However, the convergence in the last line does not follow from the continuous mapping theorem. Stochastic
integration is not a continuous functional, i.e. if f,, — f, in the uniform metric, d(), and g is bounded, then
it does not necessarily imply that [ gdf,, — [ gdf. Generally, showing convergence of stochastic integrals is
a more delicate task. Nonetheless, it holds in our case, as we have just shown.
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