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Empirical Processes

Introduction

References: Hamilton ch 17, Chapters by Stock and Andrews in Handbook of Econometrics vol 4
Empirical process theory is used to study limit distributions under non-standard conditions. Applications

include:

1. Unit root, cointegration and persistent regressors. For example if yt = ρyt 1 + et, with ρ = 1, then−
T (ρ̂− 1) converges to some non-standard distribution {

µ+ et t
2. Structural breaks at unknown date (testing with nuisance parameters). For example, yt =

≤ τ
.

µ+ k + et t > τ

Want to test H0: no break k = 0 with τ being unknown. A test statistic for this hypothesis is
S = maxτ |tτ | where tτ is the t-statistic for testing k = 0 with the break at time τ . S will have a
non-standard distribution.

3. Weak instruments & weak GMM.

4. Simulated GMM with non-differentiable objective function – e.g. Berry & Pakes

5. Semi-parametrics

We will discuss 1 & 2. We will cover simulated GMM later.

Empirical Process Theory

Let x be a real-valued random k × 1 vector. Consider some Rnt valued function gt(xt, τ) for τ ∈ Θ, where
Θ is a subset of some metric space. Let

1 T

ξT (τ) = √
∑

(gt(xt, τ) E
t=1

− gt(xt, τ))
T

ξT (τ) is a random function; it maps each τ ∈ Θ to an Rn valued random variable. ξT (τ) is called an
empirical process. Under very general conditions (some limited dependence and enough finite moments),
standard arguments (like Central Limit Theorem) show that ξT (τ) converges point-wise, i.e. ∀τ0 ∈ Θ,
ξT (τ0)⇒ N(0, σ2(τ0)). Also, standard arguments imply that on a finite collection of points, (τ1, ..., τp),

ξ T (τ1)
.. (0.

⇒ N ,Σ(τ1, ..., τp)) (1)
ξT (τp)

We would like to generalize this sort


of result so


that we talk about the convergence of ξT () as a random

function in a functional space. For that we have to introduce a metric in a space of right-continuous functions.
We define a metric for functions on Θ as d(b1, b2) = supτ Θ |b1(τ)−b2(τ)|. Let B = be a space of bounded∈

functions on Θ, and U(B) = be a class of uniformly continuous (wrt d()) bounded functionals from B to R.
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Functional Central Limit Theorem 2

Definition 1. Weak convergence in B: ξT ⇒ ξ iff ∀f ∈ U(B) we have Ef(ξT )→ Ef(ξ) as T →∞.

Definition 2. ξ is stochastically equicontinuous if ∀ε > 0, ∀η > 0, there exists δ > 0 s.t.

lim P ( sup |ξ(τ1)− ξ(τ2)| > η) < ε
T→∞ |τ1−τ2|<δ

Theorem 3. Empirical Processes Theorem: If

1. Θ is bounded

2. there exists a finite-dimensional distribution convergence of ξT to ξ (as in (1))

3. {ξT } are stochastically equicontinuous

then ξT → ξ

Condition 2 is usually easy to check checked. Main difficulty is usually in checking condition 3.
Remark 4. Stochastic equicontinuity is equivalent to:

∀{δT } : δT → 0 sup (τ1)
1 τ2 <δT

|ξ
τ

− ξ(τ2)| →p 0
| − |

Theorem 5. Continuous Mapping Theorem: if ξT ⇒ ξ, then ∀ continuous functionals, f , f(ξT )⇒ f(ξ)

Functional Central Limit Theorem

Let εt be a martingale difference sequence (i.e. E(εt|εt 1, ...) = 0 ∀t) with E(ε2t |I 2
t 1) = σ , Eε4− − t <∞.

Define

1
[∑Tτ ]

1 ∑T 1√ √
∑T

ξT (τ) = εt = √ 1 t [Tτ ] εt = gt(εt, τ)
T T

{ ≤ }
T

t=1 t=1 t=1

Consider some τ0:
√
Tτ 1

[Tτ0]

ξT (τ0) = √ 0

T
√
Tτ0

∑
εt

t=1

Standard Central Limit Theorem implies that √ 1
∑[Tτ0]

, σ2
t=1 εt ⇒ N(0 ), so

Tτ0

ξT (τ0)⇒ N(0, σ2τ0)

Similary, if we consider the joint distribution of ξT (τ0) and ξT (τ1) − ξT (τ0). These will be two non-
overlappping sums of εt, so we have:[

ξT (τ τ 2
0) 0σ 0

N 0,
ξT (τ 2

1)− ξT (τ0)

]
⇒

( [
0 (τ1 − τ0)σ

])
We can generalize this to any finite collection {τi}.

Definition 6. Brownian motion or Weiner process is a stochastic process, W (), such that

1. W (0) = 0

2. For 0 ≤ t1 < ... < tk ≤ 1, the increments, W (t2) − W (t1), ....,W (tk) − W (tk 1) are independent−
Gaussian with W (t)−W (s) ∼ N(0, t− s) for t > s

3. W (t) is almost surely continuous

The Functional Central Limit Theorem implies ξT ⇒ σW . (Surely, one has to prove stochastic equicon-
tinuity, which happens to be true here).
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Unit Root 3

Unit Root

Let yt = ρyt 1 + εt and ρ = 1(unit root process). The asymptotic behavior of y− t are very different from that
of a stationary time series (or just autoregressive processes with |ρ| < 1). For example, ξT (τ) = √1 y[Tτ ]T

⇒
σW (τ) as a stochastic processes, while for xt = ρxt−1 + et, |ρ| < 1, we have√1 x[Tτ ]T

→p 0. Another

observation: →px̄ Ext = 0 for a stationary process, while for a random walk, ȳ/
√
T has a non-degenerate

asymptotic distribution:

1 T 1 T
y

yt = t

T 3/2

∑
T

t=1

∑
t=1

√
T

1
=

∑T
ξT (t/T )

T
t=1

=
∫ 1

ξT (s)ds⇒ σ

∫ 1

W (t)dt
0 0

where we used the continuous mapping theorem in the last line. Integration is a continuous functional.
Similar reasoning shows that:

T 1

T−1−k/2
∑

ykt ⇒ σk
∫

W k(s)ds (2)
0t=1

Now, let us consider a distribution of OLS estimates in an auto-regression (regression of yt on yt−1). In
the stationary case, we have:

√ 4
√1 x , σ

t−1εt N(0
(ˆ− ) = T

∑∑ ⇒ 1 2
T

−ρ )
ρ ρ

x2 = N(0, 1 ρ2)
t 1 σ2/(1− ρ2)

−
−

Now let’s consider a non-stationary case. The asymptotic distribution of

?

∑ ρ̂ − 1 will be given by the
?

distribution of T∑ yt ε−1 t T
T y y

. We write ? because we’re not yet sure of the rate of convergence. The rate
will become clear after

t−1 t−1

working with the expression a little bit. Let’s examine the numerator and denominator
of this expression separately. For the numerator,

∑T T

yt 1ε ...+− t =
∑ T

εt(ε1 + εt )−1 =
t=1 t=1 t=1

∑
εtεs

,s<t

1 1
= y2

2 T − 2

∑
ε2t

since,

T

y2
T = (

∑ T T

εt)2 =
=1

∑
ε2t + 2

t t=1 t=1

∑
εtεs

,s<t

If we scale the numerator by 1/T , then we have:

1 ∑ 1 1
yt 1εt = ( 2

T
− 2

√ yT )2 1 1
ε

T
−

2 T

σ

∑
t

1
= (ξ ˆ

2 T (1)− 2)

1 1⇒ (W 2(1)σ2 − σ2) = σ2(W 2(1)
2 2

− 1)
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Unit Root 4

If we scale the denominator by 1/T 2, then we know from (2) above that 1
T 2

∑
y2
t 1 ⇒

∫ 1
W

0
(s)2ds. Thus,−

1 (1)
T (ˆ− 1)⇒ 2 (W 2

ρ
− 1)∫ 1

W (s)2ds
0

Using Itō’s lemma, we can modify this slightly.

Lemma 7. Itō’s lemma Suppose we have a diffusion process, Ss

Ss =
∫ s s

atdW (t) +
0

∫
btdt

0

or, informally,

dS = atdW + btdt

Let f be a three times differentiable function, then df(S) is

1
df(S) = f ′(atdW + btdt) + f ′′(a2

2 tdt)

which means that
s s 1

f(Ss) =
∫

f ′atdW (t) +
∫

(f ′bt + f ′′a2)dt
0 0 2

In our application, S = W =
∫
dw, f(x) = x2, f ′(x) = 2x, and f ′′(x) = 2. Applying Itō’s lemma we

have:

d(W 2 1
(t)) = 2wdw + 2dt

2
This means that

W 2(1) =
∫ 1 1 1

dW 2(t) = 2
0

∫
W (s)dW (s) + ds

0

∫
0

so, ∫ 1 1
W (s)dW (s) = (W 2(1)

0 2
− 1)

Thus, we have:

1 − 1)
∫
W

0
(s

2 (W 2(1) 1 )dW (s)
T (ρ̂− 1)⇒ ∫ 1 =

W
0

(s)2ds
∫ 1
W 2

0
(s)ds

Notice that:

1 ∑T ∑T y
yt−1εt = t−1 ∆y

T
t=1 t=1

√ t

T
√
T

=
∫ 1

ξT (s)dξT (s)
0

⇒
∫ 1

W (s)dW (s)
0

However, the convergence in the last line does not follow from the continuous mapping theorem. Stochastic
integration is not a continuous functional,∫ i.e.∫ if fn → f , in the uniform metric, d(), and g is bounded, then
it does not necessarily imply that gdfn → gdf . Generally, showing convergence of stochastic integrals is
a more delicate task. Nonetheless, it holds in our case, as we have just shown.
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