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Unit Roots

Review from last time

Let yt be a random walk

yt = ρyt + εt , ρ = 1

where εt is a martingale difference sequence (E[εt|It] = 0), with 1
T

∑
E[ε2t |I 2

t 1]→ σ a.s. and Eε4t < K <− ∞.
Then {εt} satisfy a functional central limit theorem,

1
[∑τT ]

ξT (τ) = √ εt
T

t=1

⇒ σW (·)

We showed last time that: 
1
∑
y σ2
t 1εt

  ∫ 1∑ ( ) ( W t dW t) T
1

−

T ∑  0

3/2 yt 1 ⇒ W dt
y

 1 (t)
1

− σ
0

2 1
σ2 2


T 2 t−1

∫
W

0
(t) dt


and our OLS estimator and t-statistic have non-standard distributions:

∫

WdW
T (ρ̂− ρ)⇒

∫∫
W 2dt

t⇒
∫√WdW∫

W 2dt

This is quite different from the case with |ρ| < 1. If

xt = ρxt−1 + εt , |ρ| < 1

then,  4
√1
∑∑xt 1ε 2

T

⇒


 − t
1 xtT −1  N(0, σ

1−ρ )

∑ Ext = 0
=

21 x2
T t Ex2 σ


−1 t 1−ρ2


and the OLS estimate and t-stat converge to normal distributions:



√
T (ρ̂− ρ)⇒N(0, (1− ρ2))

t⇒N(0, 1)
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Adding a constant

Suppose we add a constant to our OLS regression of yt. This is equivalent to running OLS on demeaned yt.
Let ymt = yt − ȳ. Then,

ˆ− 1 =
∑∑ ymt−1εtρ

(ymt−1)2

Consider the numerator:

1 ∑
ym

1
t 1ε (− t =

T

∑
yt−1

T
− ȳ)εt

1
=

∑
yt

T
−1εt − ȳε̄

ȳε̄ = 1
T 3/2

∑
y 1
t 1√ εt. We know that 1∫ 3/2

∑∑ yt 1 ⇒ σ W
T T

∫
dt, and 1

− − √
T

∑
εt

1 2

⇒ σW (1). Also, from before
we know that ytT −1εt ⇒ σ WdW . Combining this, we have:

1 ∑
ymt 1ε

2
t σ W (s)dW (s) W (1) W (t)dt

T − ⇒
(∫

−
∫ )

We can think of this as the integral of a demeaned Brownian motion,∫
W (s)dW (s)−W (1)

∫
W (t)dt =

∫ (
W (s)−

∫
W (t)dt

)
dW (s)

=
∫
Wm(s)dW (s)

The limiting distributions of all statistics (ρ̂, t, etc) would change. In most cases, the change is only in
replacing W by Wm. One also can include a linear trend in the regression, then the limiting distribution
would depend on a detrended Brownian motion.

Limiting Distribution

Let’s return to the case without a constant. The limiting distribution of the OLS esitmate is T (ρ̂ − 1)∫
WdW

⇒∫
W 2dt

. This distribution is skewed and shifted to the left. If we include a constant, the distribution is even
more shifted. If we also include a trend, the distribution shifts yet more. For example, the 2.5%-tile without
a constant is -10.5, with a constant is -16.9, and with a trend is -25. The 97.5%-tiles are 1.6, 0.41, and -1.8,
respectively. Thus, estimates of ρ have bias of order 1

T . This bias is quite large in small samples.
The distribution of the t-statistic is also shifted to the left and skewed, but less so than the distribution

of the OLS estimate. The 2.5%-tiles are -2.23, -3.12, -3.66 and of the 97.5%-tiles are 1.6, 0.23, and -0.66 for
no constant, with a constant, and with a trend, respectively.

Allowing Auto-correlation

So far, we have assumed that εt are not auto-correlated. This assumption is too strong for empirical work.
Let,

yt = yt−1 + vt

where vt is a zero-mean stationary process with an MA representation,

∞

vt =
∑

cjεj
j=0
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where εj is white noise.
before (

∑
vt,
∑
yt 1vt,

∑Now we need∑to look at the limiting distributions of each of the terms we looked at
y2
t , etc). vt is a term we already encountered in HAC estimation:−

1 T

√
T

∑
vt

t=1

⇒ N(0, ω2)

where ω2 is the long-term variance,

∞

ω2 =
j=

∑
γj = σ2c(1)2 ≡ ω2

−∞

For linearly dependent process, vt, we have the following central limit theorem:

1
[Tτ ]

ξT (τ) = √ vt ωW ( )
T

∑
t=1

⇒ ·

This can be proven by using the Beveridge-Nelson decomposition. All the other terms converge to things
similar to the uncorrelated case, except with σ replaced by ω. For example,

y√ = ξT (t/T )⇒ ωW (t/T )
T

1
T 3/2

∑
yt−1 ⇒ ω

∫
W (s)ds

An exception is:

1 ∑ 1 1
yt 1vt = y2

T
− 2T T − 2T

∑
v2
t

1⇒ (ω2W (1)2

2
− σ2

v)∫
ω2 − σ2

⇒ω2 WdW + v

2

This leads to an extra constant in the distribution of ρ̂:

T (ρ̂− 1)⇒
∫ 2ω
WdW − 1 − 2σv∫ 2 ω2

W 2dt

This additional constant is “nuisance” parameter, and thus, the statistic is not pivotal. So it is impossible
to just look up critical values in a table. Phillips & Perron (1988) suggested corrected statistics:

1ω2 ˆ2 2

T (ρ̂− 1) + 1
T 2

∫
where ω̂2 is an estimate of the long-run variance, say

∑− σ̂v
y2 2
t

∫WdW
⇒

W dt

Newey-West, and σ̂2
v is the variance of the residuals.

Augmented Dickey Fuller

Another approach is the augmented Dickey-Fuller test. Suppose,

p

yt =
∑

ajyt−j + εt
j=1
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where z = 1 is a root,

p

1−
∑

ajz
j =0

j=1

1 = aj

Suppose we factor a(L) as

∑

p

1− ajL
j = (1− L)b(L)

with p
b(L) = 1−

∑ −1
j=1 βjL

j . We can write the

∑
model as

p−1

∆yt =
∑

βj∆yt +−j εt
j=1

This suggests estimating:

p−1

yt = ρyt−1 +
∑

βj∆yt−j + εt
j=1

and testing whether ρ = 1 to see if we have a unit root. This is another way of allowing auto-correlation
because we can write the model as:

a(L)yt =εt
b(L)∆yt =εt

∆y 1
t =b(L)− εt

yt = yt + v−1 t

where vt = b(L)−1εt is auto-correlated.
The nice thing about the augemented Dickey-Fuller test is that the coefficients on ∆yt−j each converge

to a normal distribution at rate
√
T , and the coefficient on yt−1 converges to a non-standard distribution

without nuisance parameters. To see this, let xt = [yt−1,∆yt−1, ...,∆yt ]−p+1 and let θ = [ρ, β1, ..., βp ]′.−1

Consider: θ̂ − θ = (X ′X)−1(X ′ε). We need to normalize this so that it converges. Our normalizing matrix
will be 

T ... 0 0
√
T 0

Q =


 .. . .. .

0
√
T



Multiplying

 
by Q gives:



Q(θ̂ − θ) =(Q−1(X ′X)−1Q−1)−1(Q−1X ′ε)

The denominator is:  1 y2 1
T 2 t 1 3/2 yt 1∆y

1  − T
˜

Q− (X ′X)− Q−1 = 1
− t−1 ...

11 ˜
T 3/2

∑∑
yt−1∆yt X−1

∑
T

′X
..


.


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Note that 1
3/2 yt 1∆

p
yt j 0 (since we proved that 1 yt 1 )).

T T ∆y 1 2
t 2 (ω W (1)2 σ2
j v Also, we

know that 1 2
T 2

∑∑ − − → − −
y 2

⇒ −
t 1 ⇒ ω2

∫
W dt, so−

∑
ω2 W 2dt 0 ...

Q−1(X ′X)−1 EX̃ X̃Q 1 0− ⇒

 ∫
 ′

..


.


Similarly,



Q−1X ′ε =
( 1

T

∑
yt−1εt ω

√1
∑ σ WdW

∆yt−jεt

)
⇒
(
N(0, E

∫
[X̃ ′X̃T ]σ2)

)
Thus,

σ
∫∫WdW

T (ρ̂− 1)⇒
ω W 2dt

or

ω̂ T (ρ̂ 1) WdW
T (ρ̂ 1) =

−−
σ̂ 1 ˆ− βj

⇒
∫∑ ∫
W 2dt

Other Tests

Sargan-Bhargrava (1983) For a non-stationary process, the variance of yt grows with time, so we could
look at:

1 2
T 2 y
1

∑∑ t−1

T ∆y2
t−1

1 2

when ε is an m.d.s., this converges to a distribution, T2 t
t

∑
y −1

1 2∆y 1
⇒ W 2(dt). For a stationary process, this

converges to 0 in probability.
T

∑
t−

∫

Range (Mandelbrot and coauthors) You could also look at the range of yt, this should blow up for
non-stationary processes for a random walk, we have:

√1 (max min )
T √ yt − yt

(
1
∑ W

∆y2
⇒ sup λ) inf W (λ)

λλ
−

T t

Test Comparison

The Sargan-Bhargrava (1983) test has optimal asymptotic power against local alternatives, but has bad size
distortions in small samples, especially if errors are negatively autocorrelated. The augmented Dickey-Fuller
test with the BIC used to choose lag-length has overall good size in finite samples.
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