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Lecture 17
Unit Roots

Review from last time
Let y; be a random walk
Yye=pys+e,p=1

where ¢, is a martingale difference sequence (E[e;|I;] = 0), with & > E[e|I;_1] — ¢? a.s. and Ee; < K < .
Then {¢;} satisfy a functional central limit theorem,

[rT]
1
¢r(r) = — e = oW(-)
We showed last time that:
T Ly o Jo W)W (1)
ﬁ Dyi-1 | = o [, W(t)dt
77 2 Y1 o2 [ W (t)2dt

and our OLS estimator and t-statistic have non-standard distributions:

JwWaw
J W2t

[ Wdw
t=

\ [ W2dt

This is quite different from the case with |p| < 1. If

T(p—p) =

Ty = pri_1+ €, |p| <1

then,
4
%th—let N(O»ﬁ)
% Z Ti_1 = E(Et =0
2
T Yty Ex} = 1ip2

and the OLS estimate and t-stat converge to normal distributions:

VT (p—p) =N(0,(1—p*)
t=N(0,1)
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Adding a constant

Suppose we add a constant to our OLS regression of y;. This is equivalent to running OLS on demeaned y;.
Let yi* =y —¥y. Then,

Do yitq€r
Z(yﬁl)z

p—1=

Consider the numerator:
1 1 B
T Z Yit €t =7 Z(yt—l —Ye
1
=7 Z Yi—1€t — Y€

e = ﬁ Zyt 1%6,5 We know that ﬁ SNy—1 = o [ Wdt, and %Zet = oW(1). Also, from before
we know that & Zyt 16 = 02 deW Combining this, we have:

Zyt L6 =02 (/W )W (s /W dt)

We can think of this as the integral of a demeaned Brownian motion,

/W YW (s /W t)dt = /(W(s)—/W(t)dt) dW (s)
= [wrsaws)

The limiting distributions of all statistics (g, ¢, etc) would change. In most cases, the change is only in
replacing W by W™ . One also can include a linear trend in the regression, then the limiting distribution
would depend on a detrended Brownian motion.

Limiting Distribution

Let’s return to the case without a constant. The limiting distribution of the OLS esitmate is T(p — 1) =
[ wdw
[ w2dt
more shifted. If we also include a trend, the distribution shifts yet more. For example, the 2.5%-tile without
a constant is -10.5, with a constant is -16.9, and with a trend is -25. The 97.5%-tiles are 1.6, 0.41, and -1.8,

respectively. Thus, estimates of p have bias of order % This bias is quite large in small samples.
The distribution of the t-statistic is also shifted to the left and skewed, but less so than the distribution
of the OLS estimate. The 2.5%-tiles are -2.23, -3.12, -3.66 and of the 97.5%-tiles are 1.6, 0.23, and -0.66 for

no constant, with a constant, and with a trend, respectively.

This distribution is skewed and shifted to the left. If we include a constant, the distribution is even

Allowing Auto-correlation

So far, we have assumed that €; are not auto-correlated. This assumption is too strong for empirical work.
Let,

Yt = Yt—1 + V¢

where vy is a zero-mean stationary process with an MA representation,

o0
UV = E Cj€j
Jj=0
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where ¢; is white noise. Now we need to look at the limiting distributions of each of the terms we looked at
before (3" ve, - yi—1vr, Y y2, etc). Y v is a term we already encountered in HAC estimation:

where w? is the long-term variance,

This can be proven by using the Beveridge-Nelson decomposition. All the other terms converge to things
similar to the uncorrelated case, except with ¢ replaced by w. For example,

vy _
= er(t/T) > W (/T
# Zyt_l = w/W(s)ds

An exception is:

*Zyt 1V = 2T th

:5w%vaf—ab
2 _
w2 / waw + <%
This leads to an extra constant in the distribution of p:

Jwaw — 1<
Ik W2dt

T(p—1) =

This additional constant is “nuisance” parameter, and thus, the statistic is not pivotal. So it is impossible
to just look up critical values in a table. Phillips & Perron (1988) suggested corrected statistics:

2

where &2 is an estimate of the long-run variance, say Newey-West, and 62 is the variance of the residuals.

Augmented Dickey Fuller
Another approach is the augmented Dickey-Fuller test. Suppose,

p
Yo = Zajytfj + €
j=1

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http:£ focw.mit.edu)7
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].


http://ocw.mit.edu

Augmented Dickey Fuller 4

where z =1 is a root,

P
1- Zajzj =0
j=1
1 :Zaj

Suppose we factor a(L) as

1- Epjaij = (1—L)b(L)

with (L) =1 — Zf;i B;L7. We can write the model as

p—1
Ay, = Z BiAyi—j + e
j=1
This suggests estimating;:
p—1
Yt = pyt—1 + ZﬂjAyt—j Tt €t
j=1

and testing whether p = 1 to see if we have a unit root. This is another way of allowing auto-correlation
because we can write the model as:

a(L)y: =¢;
b(L) Ay, =€
Ay, =b(L) e
Yt = Yt—1 + vt

where v, = b(L) e is auto-correlated.

The nice thing about the augemented Dickey-Fuller test is that the coefficients on Ay;_; each converge
to a normal distribution at rate /T, and the coefficient on v;_; converges to a non-standard distribution
without nuisance parameters. To see this, let 2; = [ys—1, Ays_1, ..., Ays_pr1] and let 0 = [p, B1, ..., Bp_1]-

Consider:  — 6 = (X’X)~1(X’e). We need to normalize this so that it converges. Our normalizing matrix
will be

T .. 0
0 VT 0

0 VT
Multiplying by Q gives:
QO -0) =@ (X'X)7'Q ) Q' Xe)

The denominator is:

. %Zygq
Q—l()(’X)—lQ—1 =| 732 D Y1 Ay

Yt—1

577 2 Y1 A
1x'x
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Note that —3= > 4—1Ay—; — 0 (since we proved that &>y, 1Ay,—; = $(W?*W(1)? — 02)). Also, we
know that 75 Y- y7 | = w? [ W3dt, so

w? [[W2dt 0
QI X'X)'Q ! = 0 EX'X
Similarly,
1
A T Y16t UwfVYdW
@ Xe= ( ﬁZAyt—jﬁt > = < N(0,E[X'X]0?)
Thus,
R o deW
T(p-1)= 2L
P=1 = Twea
or

o _ Ty | JWdw

Uzl_zﬁj fW2dt

Other Tests

Sargan-Bhargrava (1983) For a non-stationary process, the variance of y; grows with time, so we could
look at:

% Zytz—l
% Z Ayt{l

2
# > Y1

when ¢; is an m.d.s., this converges to a distribution, ES SN
T t—1

= [W?(dt). For a stationary process, this
converges to 0 in probability.

Range (Mandelbrot and coauthors) You could also look at the range of y;, this should blow up for
non-stationary processes for a random walk, we have:

—— (max y; — min y;)
VT i Y supW(N) - inf 1W/())
VT Ay A
Test Comparison

The Sargan-Bhargrava (1983) test has optimal asymptotic power against local alternatives, but has bad size
distortions in small samples, especially if errors are negatively autocorrelated. The augmented Dickey-Fuller
test with the BIC used to choose lag-length has overall good size in finite samples.
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