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Lecture 19

Breaks and Cointegration

The goal of this lecture is to analyze and test for another type of non-stationarity- break in parameters
of a process. Empirical Processes Theory will be our working horse. Estimation of break date (once break
is detected) is usually done by OLS, and is not discussed here.

Breaks

Suppose yt = βt
′xt−1 + εt, where

t
=

{
β t ≤ 0

βt ,
β + γ t > t0

xt and E[εt|It] = 0 are iid variables. We want to test whether there is a break.

Break at a known date. Assume that the date of the break t0 is known. Then we can run a regression
yt = βt

′xt−1 + γ′It>t0xt 1εt and test for a break is a test of hypothesis H− 0 : γ = 0. We could just do an
F-test (which in this context is called Chow test).

t0 (SSR1,T − (SSR
FT ( ) = 1,t0 + SSRt0+1,T ))/k

T (SSR1,t0 + SSRt0+1,T )/(T − 2k)

where SSRt,s is the sum of squared residuals from OLS using the sample from time t to time s. Under the
null and assuming that t0 = [δT ] (there are increasing number of observations on both sides of the break),
we have FT ⇒ χ2

k/k, where k is the number of restrictions (the dimension of γ). This test is valid when t0
is known.

Break at an unknown date.

When t0 is not known, a test as above (testing for a break at a single specific date) is not powerful. Note that
t0 is a nuisance parameter, which is identified only under the alternative, but not under the null hypothesis.
One test-statistic is the Quandt statistic that aims at a maximum value of a set of F-statistics for different
break times:

t
Q = sup 0

FT ( ) (1)
[δT ]≤t0≤[(1−δ)T ] T

The statistics seemed to be attractive and was known for a long time, but the asymptotic of it was unknown
until Andrews’ (1993) paper. Other test statistics are the Mann-Wald (average F-statistic):

1 T∑−r
t

MW = F ( 0 ) = [
T − 2 T , r δT ] (2)

r T
t0=r
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Break at an unknown date. 2

and the Andrews-Ploberger (1994) (geometric average):

1 T−r 1 t
AP = ln

[
exp F

T − 2 T ( 0 ) (3)
r 2

t

∑

0=r

(
T

)]

To make the statistics above usable, we need to answer an important question: what are their asymp-
totic distributions? For this we’ll use empirical process theory (Functional CLT). We make the following
assumptions:

1. Uniform Law of Large Numbers: the following convergence hold uniformly in τ such that 0 < δ < τ <
1− δ < 1:

1
[Tτ ]

ΨT (τ) =
∑ p

xt−1x
′

T t−1

t=1

→ τΣxx

The above is a generalization of a law of large numbers 1 T
T t=1 xt−1x

′ p
t 1 → Σxx.−

2. Functional central limit theorem (for which we need some

∑

additional assumptions, e.g. sufficient
conditions would be that x and ε are independent and xt are iid with finite fourth moments):

1
[δT ]

√
∑

xt 1εt = ξT (δ)
T

−
t=1

⇒ σΣ1/2
xx Wk(·)

where Wk(·) is k-dimensional Brownian motion, and σ2 is the variance of εt.

To derive the limiting distribution of F statistics, we must look at the behavior of SSR. Let β̂ be the
OLS estimate from the sample from t = 1, .., r.

SSR1,r =
∑r

(y ˆ
t

t=1

− β′xt−1)2

r

=
∑ r

ε2 2( ˆ
t − β − β)′ x

t=1

∑
t−1εt + (β̂ − β)′

r r

∑r

x β̂t−1x
′
t−1( − β)

Then, since (β̂ − β)′ = (
∑

t=1 xt−1x
′
t−1)

−1(
∑

t=1 xt−1εt), we have
r

SSR1,r =
∑ r r r

ε2t − (
∑

xt 1εt)′(
∑

xt 1xt
′ )− − −1

−1(
t=1 t=1 t=1

∑
xt−1εt)

t=1

Combining this, we have, for [τT ] = r:
r

SSR1,r −
∑

ε2
1

t =(
t=1

√
T

=ξ (τ)

∑r 1 r 1
xt 1εt)′(

∑
xt 1x

′
t 1)

−1(−
T

− −
t=1 t=1

√
T

′Ψ (τ)−1ξ (τ)

∑r

xt−1εt)
t=1

T T T

σ2

⇒ Wk(τ)′Wk(τ)
τ

Now, looking at the numerator of F , we have

(SSR1,T − (SSR1,[Tτ ] +( SSR[Tτ ],T ))/k

σ2 W
+ k(τ)′W (⇒ − (1)′ (1) k τ) (W W

+ k(1)− K(τ))′(Wk(1)
Wk Wk

−Wk(τ))
k τ 1− τ

σ2 (Wk(τ)− τWk(1))′(Wk(τ)− τW (1))

)

⇒ k

k τ(1− τ)
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Recursive Estimation 3

Under the null (of no break)
SSR1,[Tτ ] + SSR[Tτ ],T )

T − 2k
→p σ2

Let us introduce a process Bk(τ) = Wk(τ)− τWk(1) called a Brownian bridge. It is a linear transformation
of a Brownian motion that is required to be 0 at t = 0 and t = 1. Thus we have convergence of processes
(as a weak convergence of processes)

B (τ)′B (τ)
FT (τ) ⇒ k k

kτ(1− τ)

Now we can get asymptotic distributions of test statistics as they are continuous functionals of FT ():

B
Q ⇒ sup k(τ)′Bk(τ)

δ≤τ≤1 τ(1 τ)−
∫
δ −

1 1−δ Bk(τ)′B
MW ⇒ k(τ)

dτ
1− 2δ δ kτ(1− τ)

1 1−δ B (τ)′B (τ)
AP ⇒ log

(
exp k

1− 2δ

∫ {
k

δ kτ(1− τ)

}
dτ

)

Conclusions and Remarks:

• A nice feature of the last statements is that the limiting distributions do not depend on nuisance
parameters. We can simulate these distributions to find critical values. The test for H0 : no break vs.
Ha : there is one break can be performed by calculating the Q statistic in sample and comparing it to
the simulated critical values. We will reject large values of Q. An alternative approach is bootstrapping
the Q statistic.

• Critical values for Q test are bigger than for Chow test(known break date).

• If errors are auto-correlated one needs to correct for that (use HAC version of Chow test).

• Uniform Law of Large Numbers Assumption implicitly assumes stationarity of xt.

More than one break

• Theoretically it is possible to get asymptotic distributions for statistics testing for two breaks.

• Practically: you have to simulate critical values, which in a case of even just 2 breaks is heavy compu-
tational burden. And complexity increases with dimensionality rapidly.

• Ideologically: If you allow for multiple breaks in a relatively small sample probably you should model the
situation differently. Alternatives: describe a process for breaks to occur (deterministic or stochastic),
or introduce continuously changing coefficients.

Recursive Estimation

Another idea for how to test for breaks is to look whether the estimation of β on different horizons is stable
(so called recursive estimation). Let:

r

β̃(r/T ) =(
∑ r

xt 1x
′
t )−1

−1(−
t=1

∑
xt−1yt)

t=1
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Unit Root tests with a Break 4

One can calculate estimates of β̃ recursively and look at their stability. If β̃ changes a lot, it is a sign of
a break. Formally, we need to formalize what does it mean “changes a lot”, that is , we have to find the
asymptotic distribution. Suppose H0 : no breaks is true and β is the true coefficient. Then,

√
1 σΣ−1/2

W (τ)
T (β̃(τ)− β) = ΨT (τ)− ξT ( ) k

τ ⇒ xx

τ

The problem is the nuisance parameters, β and Σxx. We can eliminate them from the asymptotic distribution
by estimating β by β̃(1) and looking at the associated t-statistic:

1 W (τ)
tt(τ) = σ̂−1( x x′ )1/2

√
T (β̃ k

β̃ε t 1
T t 1 (τ)− (1))− − ⇒

τ
−Wk(1)

and as above, you can use test statistic

∑

supδ τ |tT (τ)| and critical values simulated from sup W
≤ τ{ k(τ)

τ −Wk(1)}.
There are many ways to test for breaks, and the way to derive the limiting distribution of test statistics is
by using the FCLT.

Unit Root tests with a Break

Consider a unit root process with possible break in trend. The model is yt
∗ = yt + dt where yt is a random

walk and dt = c + γ1t>t0 is a trend. How do we then test for a unit root? Two observations:

1. The distribution of Dickey-Fuller statistics is very sensitive to the trend specification. If the trend in
misspecified, for example if yt

∗ regressed on const, yt
∗

1 (the break is ignored), then you are likely to−
accept a unit root, even if there is no one. The intuition is that both a break and a unit root lead to
permanent changes in yt.

2. If the trend is correctly specified say Dτ
t = (1,1t>[τT ]) is for a known break date at time t0 = [τT ],

then we can get the asymptotics of Dickey-Fuller statistics under unit root assumption. For example,
∫ 1

Pdτ W
0

(s)dW (s)
T (ρ̂− 1) ⇒ ,1

0
(Pdτ W (s))2ds

where P N 1
N = I−N( ′N)− N is a linear projection

∫

to a space perpendicular to N , and dτ = (1,1t>τ )′.
In practice, you would simulate critical values imposing the correct break date.

Perron (1989) found that if you allow for breaks during the Great Depression (1929) and during the oil
shocks (1973), then you reject the null of unit root in most macro series. Christiano(1992) and Zivot and
Andrews(1992) objected to this by arguing that it is not fair to treat the break dates as known. If you
test for unit roots without assuming the break dates are known, then you have to change a statistic. One
suggestion would be

tmin
DF = min t(τ),

τ∈[δ0,δ1]

where t(τ) is Dickey-Fuller t-statistic for a known break date at t0 = [τT ]. That surely, does not change the
value of statistic from what Perron obtained, but suggest different critical values. As a result, one cannot
reject the null of unit root in most series if assume “unknown break date”.

Cointegration

Spurious Regression

Let xt and yt be two independent random walks,

yt = yt−1 + zt

xt = xt−1 + ut
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Spurious Regression 5

where zt and ut are iid and independent of each other. Suppose we run OLS of yt on xt.

yt = βxt + et

The true value of β is 0. However, if you simulate this model and test the hypothesis H0 : β = 0 using OLS
t-statistic you will likely faulty reject it in a large portion of cases. That can be seen from the following lines.

1

β̂ = T 2

∑
ytxt

1
T 2 x2

t

Let assume that the functional central limit theorem w

∑

orks:

1 x
ξ (τ) = √

(
[τT ] W

T W (τ) = 1(τ)
T y[τT ]

)
⇒

(
W2(τ)

)

where W (τ) is a 2-dimensional Brownian motion. Since integrals are continuous functionals, we have:

1
ξT (t/T )ξT (t/T )′

T
⇒

∫
W (τ)W (τ)′dτ

Thus,

∑

1

β̂ = T 2

∑
ytxt W

1 2
T 2 t

⇒
∫

W1 2dt

x W 2
2 dt

That is, β̂ is not consistent. You won’t receive zero

∑

even in v

∫

ery large samples. Next, we can notice that the
estimate of variance of error term diverges:

σ̂2 1 1 T 1 T 1 T 1 T

= SSR = (y y2
t βxt)2 = T ( 2β ytxt + β2 x2)

T T

∑
2

=1

∑
t 2

t

−
T

t=1

−
T

∑
T 2 t

t=1

∑
t=1

1

̂ ̂

σ
T

̂2 ⇒
(∫

W 2 ( W
1 −

∫
W1 2dt)2

dt ∫
W 2

2 dt

)

As a result,
β

t =
σ

̂√∑
x2

t =
√ β

T √
1

̂
T 2

σ2
T

√
1 ∑

2

We can see that |t| →p ∞, that is, in large

̂ x
̂

t

samples you will faulty reject the null in almost all samples. The
important point here is that with non-stationary regressors, we get behavior of OLS estimates.

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

http://ocw.mit.edu


MIT OpenCourseWare
http://ocw.mit.edu
 
 
14.384 Time Series Analysis
Fall 2013
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



