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Lecture 2

Limit Theorems, OLS, and HAC

Limit Theorems

What are limit theorems? They are laws describing behavior of sums of many random variables. The mostly
used are the Law of Large Numbers and Central Limit Theorem. In fact, these are two sets of theorems,
rather than just two theorems (different assumptions about moments conditions, dependence and the way
of summing can lead to similar statements). The most generic form is:

If {xi} is a sequence of independent identically distributed (iid) random variables, with Exi = µ,
Var(xi) = σ2 then

1. Law of large numbers (LLN) – 1
n

∑n 2
i=1 xi → µ (in L , a.s., in probability)

√
n 1

∑n
2. Central limit theorems (CLT) – ( i=1 xi − µ) ⇒ N(0, 1)σ n

We stated these while assuming independence. In time series, we usually don’t have independence. Let us
explore where independence may have been used.

First, let’s start at the simplest proof of LLN:

E

( 2n n
1 1

xi µ =Var xi (1)
n

∑ )
n

i=1

−

( ∑
i=1

)
n

1
= Var xi (2)
n2

(∑
i=1

)
n

1
=
n2

∑
Var(xi) (3)

i=1

nσ2

=
n2

→ 0 (4)

We used independence to go from (2) to (3).
Without independence, we’d have

Var

( ∑n1
xi

n
i=1

)
n

1
=
n2

∑ n

i=1

∑
cov(xi, xj)

j=1

1
= (nγ0 + 2(n
n2

− 1)γ1 + 2(n− 2)γ2 + ...)

n
1

=
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1

n
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n
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]

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

http://ocw.mit.edu


Limit Theorems 2

If we assume absolute summability, i.e.
∑∞

j= |γ <−∞ j | ∞, then

1
lim

n→∞ n

[∑n
γk

k=1

(
k

1−
n

)
+ γ0

]
= 0

Thus, we have:

Lemma 1. If xt is a weakly stationary time series(with mean µ) with absolutely summable auto-covariances
then a law of large numbers holds (in probability and L2).

Remark 2. Stationarity is not enough. Let z ∼ N(0, σ2). Suppose xt = z ∀t. Then cov(xt, xs) = σ2 ∀t, s, so
n

we do not have absolute summability, and clearly we do not have a LLN for {xt} since the average 1
n i=1 xi

equals to z, which is random.

Remark 3. For an MA, xt = c(L)et, we have
∑∞

j=1 |cj | < ∞ implies
∑∞

γ <

∑
−∞ | j | ∞

The proof is easy. Last time we showed that

∞

γk =
∑

cjcj+k

j=0

then ∑∞ ∞ ∞

γk = cjcj+k

k=0

| |
k

∑
=0

|
∑
j=0

|

∞

≤
k

∑∑∞
cj cj+k

=0 j=0

| || |

∞

≤
∑∑∞

|cj ||cl
l=0 j=0

|

=

∑∞
j=0

|cj |

2 < ∞

From the new proof of LLN one can guess that the variance in a central limit theorem should change.
Remember that we wish to normalize the sum in such a way that the limit variance would be 1.

n
1

Var

(
√
n

∑
xi

i=1

)
=γ0 + 2

k

∑n
γk

=1

(
k

1−
n

)
∞

→γ0 + 2 γk =
k

∑
=1

J

J is called the long-run variance and is a correct scale measure.
There are many Central Limit Theorems for serially correlated observations. The simplest is for MA(∞).

Theorem 4. Let yt = µ+
∑∞

j=0 cjet j, where et is independent white noise and−
∑∞

j=0 |cj | < ∞, then

√
T

(
T

1 ∑
yt µ N(0, )

T
t=1

−

)
⇒ J

For another version we have to introduce the following notations.
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• Let It be information available at time t, i.e. It is the sigma-algebra generated by {yj}tj=−∞

• Let τt,k = E[yt|It k]− E[yt|It k 1] is the revision of forecast about y− − − t as the new information arrives
at time t− k.

Definition 5. A strictly stationary process {yt} is ergodic if for any t, k, l and any bounded functions, g
and h,

lim cov(g(yt, ..., yt+k), h(yt+k+n, ...yt+k+n+l)) = 0
n→∞

Theorem 6 (Gordon’s CLT). Assume that we have a strictly stationary and ergodic series {yt} with Ey2t <
∞ satisfying:

1.
∑

(Eτ2 1
j t,j)

/2 < ∞

2. E[yt|It j ] → 0 in 2
− L as j → ∞

then

T
1√
T

∑
yt

t=1

⇒ N(0,J ),

where J = γ0 + 2
∞
k=1 γk is a long-run variance.

Remark 7. Notice,

∑
that yt =

∑∞
j=0 τt,j . The condition 1 is intended to make the dependence between distant

observations to decrease to 0. Condition 1 can be checked (see an example below). I’m not sure how the
ergodicity can be easily checked. Condition 2 is aimed at the correct centering, in particular, it implies that
E[yt] = 0

Example 8. AR(1) yt = ρyt +−1 et
We can check condition 2. We have E[y |I ] E[y I ] = ρk and k

t t e Eτ2 = ρ2 σ2, so condition 2 is−k − t| t−k−1 t−k t,j

satisfied. More generally, if the MA has absolutely summable coefficients, then condition 2 will hold. One
can notice that E[yt|It k] = ρkyt k, so condition 3 holds. Now let’s calculate the long-run variance:− −

σ2ρk
γk =

1− ρ2

∞
σ2

J = γ0 + 2
k

∑
γk =

1
=1

− ρ2

(
1 + 2

k

∑∞
ρk

=1

)
σ2

=
(1− ρ)2

Remark 9.
∞ ∞

J = γ0 + 2
k

∑
γk =

=1 k=

∑
γk = γ(1)

−∞

where γ(1) is the covariance function from last lecture evaluated at 1. Recall:∑∞
γ(ξ) = γiξ

i

i=−∞

and if a(L)yt = b(L)et, then

b(ξ)b(ξ−1)
γ(ξ) = σ2

a(ξ)a(ξ−1)

so

J =

(
b(1)

)2

σ2

a(1)
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Remark 10. If {yt} is a vector, then let Γk = cov(yt, yt+k) and J =
∞

Γ−∞ k. The only thing that’s different
from the scalar case is that Γk = Γ k. Instead, Γk = Γ′

k. All the form

∑
ulas above also hold, except in matrix− −

notation. For example, for a VARMA,

J =A−1BΣB′A−1′

Remark 11. If yt is a martingale difference: E[yt|It 1] = 0, then there is no serial correlation and− J = σ2.

OLS

Suppose yt = xtβ + ut . In cross-section xt is always independent from us if s = t due to iid assumption,
so the exclusion restriction is formulated as E(ut|xt) = 0. In time series, however, we have to describe the
dependence between error terms and all regressors.

Definition 12. xt is weakly exogenous if E(ut|xt, xt−1, ...) = 0

Definition 13. xt is strictly exogenous if E(ut|{xt}∞t= ) = 0−∞

Usually, strict exogeneity is too strong an assumption, it is difficult to find a good empirical example for
it. The weak exogeneity is much more functional (and we will mainly assume it).

ˆOLS estimator: β = (X ′X)−1(X ′y)
What is the asymptotic distribution?

√ 1 1ˆT (β − β) =( X ′X)−1(
T

√ X ′u)
T

1 1
=(

∑
x 1
tx

′
t)

− (
T

t

√
T

∑
xtut)

t

Appropriate assumptions will gives us a LLN for ( 1
T t xtx

′
t) → M . Assume also Gordon’s condition for

zt = xtut. If ut is weakly exogenous, then centering is

∑
OK. Gordon’s CLT gives (√1

∑
t xtut)T

⇒ N(0,J ),

which means that

√
ˆT (β − β) ⇒ N(0,M−1JM−1)

The only thing that is different from usual is the J . J =
∞

γ (where−∞ j γj are the autocovariances of zt =
xtut) is called the long-run variance. The long-run variance usually arise from potentially auto-dependent
error terms ut. The errors usually contains everything that

∑
is not in the regression, which is arguably auto-

correlated. It also may arise from xt being autocorrelated and from conditional heteroskedasticity of the
error terms. We need to figure out how to estimate J . This is called HAC (heteroskedasticity autocorrelation
consistent) standard errors.

Remark 14. A side note on GLS. If one believes in strict exogeneity, then the estimation can be done more
efficiently by using GLS. However, GLS is generally invalid if only weak exogeneity holds.

The logic here is the following. In many settings error terms ut are arguably auto-correlated, one may
think that estimation is not fully efficient (as Gauss-Markov theorem assumes that observations are uncrre-
lated) and could be improved. Assume for a moment that

yt = βxt + ut; and ut = ρut−1 + et.

Assume also for a moment that ρ is known and et are serially uncorrelated(white noise). You may think of
transforming the system of observations and replace t’ s equation with the quasi-differenced one:

yt − ρyt 1 = β(x ρx− t − t−1) + et;
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or ỹt = βx̃t + et, where ỹt = yt − ρyt 1 and x̃t = xt − ρxt 1. The new system seems to be better since the− −
errors are not autocorrelated and have the same variance (with the exception of the first one). If we have
strong exogeneity then the OLS for the new system (the first equation should be corrected to have the same
variance) is the efficient(BLUE). What we described is efficient GLS in this case. The problem thought is
that

E[et|xt, xt 1, ....] = E[ut|xt, xt 1, ...]− − − ρE[ut−1|xt, xt ,−1 ...]

However, if ut satisfied only weak exogenuity but not strong exogenuity assumption, then the new error may
not satisfy the exogenuity condition, and the OLS in the transformed system will be biased. So, unless you
believe in strong exogeneity (which is extremely rare), you should not use GLS.

HAC

Assume we have a series {zt} satisfying Assumptions of CLT, and we want to estimate J =
are

∑∞
γ−∞ k. There

two main ways: parametric and non-parametric.

Parametric

Assume zt is AR(p):

zt = a1zt−1 + ...+ apzt−p + et

then J = σ2

2 , where a(L) = 1− a1L− ...apL
p. We can proceed in the following way: run OLS regressiona(1)

ˆof zt on zt 1, ..., zt p, get â , ..., â 2
1 p and σ̂ , then use â(L) = 1− − â1L− ..− â p

− pL to construct J ,

σ̂2

Ĵ = .
â(1)2

Two important practical questions:

• What p should we use? – model selection criteria, BIC (Bayesian informaiton criteria)

• What if zt is not AR(p)?

The second question is still an open question. Den Haan and Levin (1997) showed that if zt is AR(p), then
the convergence of the parameteric estimator is faster than the kernel estimator described below.

Non-parametric

A näıve approach

J is the sum of all auto-covariance. We can estimate T − 1 of these, but not all. What if we just use the
ones we can estimate, i.e.

T−1

J̃ =
∑ T k

1
−

γ̂k , γ̂k =
T

k=T−1

∑
zjzj+k

j=1
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It turns out that this is a very bad idea.

T

γ̂
k

∑−1

J̃ = k

=−(T−1)

T
1 ∑−1 T k

=
∑−

zjzj+k
T

k=−(T−1) j=1

T
1

= (
T

∑
zt)

2

t=1∑T1
=(√ zt)

2

T
t=1

⇒N(0,J )2

J̃so is not consistent; it converges to a distribution instead of a point. The problem is that we’re summing
too many imprecisely estimated covariances. So, the noise does not die out. For example, to estimate γT−1

we use only one observation, how good can it be?

Truncated sum of sample covariances

What if we don’t use all the covariances?

ST

J̃2 = γ̂k
k=

∑
−ST

where ST < T and ST → ∞ as T → ∞, but more slowly.
First, we have to notice that due to truncation there will be a finite sample bias. As ST will increase

the bias due to truncation should be smaller and smaller. But we don’t want to increase ST too fast for the
reason stated above (we don’t want to sum up noises). Assume that we can choose ST in such a way that
this estimator is consistent. Then we might face another bad small sample property: the estimate of long
run variance may be negative: J̃ ˜

2 < 0 (or in vector case, J2 not positive definite)

J̃ ˜Example 15. Take ST = 1, then 2 = γ̂0 +2γ̂1. In small samples, we may find γ̂1 < −1/2γ̂0, then J2 will be
negative.

Weighted, truncated sum of sample covariances

The renewed suggestion is to create a weighted sum of sample auto-covariances with weights guaranteeing
positive-definiteness:

ST

Ĵ = k
j=

∑
T (j)γ̂j

−ST

Remark 16. kT () is called a kernel.

We need conditions on ST and kT () to give us consistency and positive-definiteness. ST should increase
ST → ∞ as T → ∞, but but not too fast.
kT () needs to be such that it guarantees positive-definiteness by down-weighting high lag covariances. Also
need kT () → 1 for consistency.
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