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Cointegration

We think, or at least we cannot reject the null hypothesis, that many macro series have unit roots. For
example, log consumption and log output are both non-stationary. At the same time often we can argue that
some linear combination of them is stationary,say, the difference between log consumption and log output is
stationary. This situation is called cointegration. We will see on today lecture that asymptotic behavior of
estimates change completely depending on whether the series are cointegrated. The practical problem will
be though that we often do not have enough data to definitively tell whether or not we have cointegrated
series.

Multi-dimensional Random Walk

I start with summarizing multivariate convergence results. I am not providing proofs, but they can be easily
found in the literature. Each of the statements are just multi-dimensional variants of single dimension results
that we’ve already seen.

Let εt be i.i.d. k × 1-vectors with zero mean, E[εtε
′
t] = Ik, and finite fourth moments. Then,

1
[τT ]

ξT (τ) =√
T

∑
εt

t=1

⇒ W

where W is a k-dimensional Brownian motion. We also want to allow for serial correlation, so we need to
look at the behavior of

vt = F (L)εt , i|Fi| < ∞

The longterm variance of vt will be F (1)F (1)′. Finally

∑

, let

ηt = ηt + v−1 t

We will use the following results:

(a) η√[T τ] = √1 [Tτ ]
v

T T t=1 t ⇒ F (1)W (τ)

(b) 1 1
ηt 1ε

∑

F W t dW tT (

(c)

∑ ′− t ⇒ (1)
∫
0

) ( )′

1
T 3/2 ηt ⇒ F (1) Wdt

(d) 1
2

∑ ∫

∑
ηtηt

′ ⇒ F (1)
∫

WWT
′dtF (1)′

(e) 1
T 5/2

∑
tηt ⇒ F (1)

∫
tW (t)dt
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Intro to Cointegration

Last time we started the discussion of OLS estimates on persistent regressors. We’ve seen on a case of
spurious regression that if there is no cointegration, then the estimate is not consistent, and |t| →p ∞. Now
we consider an example of regression with persistent regressors when there is a cointegration.

Let us have two random walks, xt and yt, such that a linear combination of them is stationary. This
situation is called co-integration.

{
yt = βxt + et ; (e
xt = xt−1 + u t, ut)

t
∼ i.i.d.

Assume that√Ee2 2
t = Eut = 1; cov(et, ut) = φ, and forth moments are finite. For simplicity assume that

et = φut + 1− φ2zt, and apply convergence above to εt = (ut, zt)′.

1
[∑Tτ ]

√
T

t=1

(
ut

zt

)
⇒

(
W1(τ)
W2(τ)

)

here W1 and W2 are two independent Brownian motions.
We are interested in OLS estimator of β in a regression of yt on xt. Notice that xt is not exogenous

(correlated with the error term in the first regression!). Despite this correlation (and contrary to your
cross-section-OLS intuition), β will be consistently estimated. Moreover, β̂ is super-consistent.

1

T (β̂
x x− te

1
t t 1et + 1 utet

β) = T −
1

∑ ∑
∑ = T T

1
2 x2

t 2

∑
x2

T T t

∑

From what we know the denominator converges to
∫ 1

W 2dt
0 1 , the second term in the numerator satisfies the

Law of Large Numbers. The statement (b) implies:

1 ∑ φ ∑ √
1− φ2 1

xt =−1e 2
t xt−1ut +

∑
xt W−1zt ⇒ φ

∫ 1

1dW1 +
T T

√
1− φ

T 0

∫
W1dW2

0

We conclude that

( ˆ φ W 2

− ) ⇒
∫

1dW1 +
β

√
1− φ 2

β

∫
W1dW + φ

T .
W 2

1 dt

Notice that if = 0 ( is exogenous), then the limiting

∫

distribution ( ˆ − ) ⇒
∫
∫W1dW

φ x T β β 2
t 2W1 dt

is centered at
zero and free of nuisance parameters. However, since φ = 0, the limiting distribution is shifted. As a result,
β̂ has a finite sample bias of order 1

T , which could be large. In addition, one can show that the limit of
the t-statistic would also depend on φ, and thus, not be free of nuisance parameters. This makes inference
difficult.

Regression with persistent regressors.

Three facts from the example above may look strange at first: 1) the rate of convergence on persistent
regressor is stronger; 2) if regressor is persistent small endogenuity does not preclude us from having a
consistent estimator; 3) behavior for cointegrated case is strickingly different from no-cointegration.

Let us consider a more general regression that may have different stochastic and non-stochastic trends.
Let us write the model as

yt = γzt + et
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Regression with persistent regressors. 3

where zt = [z1t z2t z3t z4t] where z1t is zero-mean and stationary, z2t is a constant, z3t is I(1), and z4t = t.
We can write zt as

zt =


F1(L) 0 0 0

0 1 0 0
F2(L) G H 0

 
ε




F3(L) T k 1

  t

  1
ηt

t



where ε

 

t (i.i.d) and ηt (non-stationary process) are defined in the first section of this lecture. Assume that
et is a stationary process (we may think of it as a component of vt). The regression of such a for is called
canonical.

We show that the coefficients on the different components of zt will converge at different rates. γ is the
OLS estimate. We are interested in the asymptotic behavior of

γ̂ − γ = (z′z)−1z′e

̂

We need some normalization for this to converge to a distribution. Our normalizing matrix will be:
 √

TI
 k1 0 0 0

0
√

 T 0 0
Q =

0 0 TIk3 0



0 0 0 T 3/2

 ,

here k1 = dim(z );



1t k3 = dim(z



3t) We look at:

Q(γ̂ − γ) =(Q−1z′zQ−1)−1Q−1z′e

Consider the first part:

0
1 1


const


k1 × k1-matrix

0
 0 0

 The elements of this block converge
Q− z′zQ− ⇒  0  to functions of Brownian motions. The exact



0 form of it is not important for the current point

 
 

Explanation:



- the convergence in the upper-left corner is due to Law of Large Numbers (applied to stationary process);

- 1 z1tT →p Ez1t = 0 due to LLN and z1 is mean zero;

- 1 zT

∑
∑

1tz3t∑is a sum of the form described in (b) so it converges to some linear function of W (t)dW (t)′;
then, 1 z p

3/2 1tz3tT
→ 0.

∫

- one can heck using Chebyshev’s inequality that 1 p
2

∑
z1ttT → 0

- you should check also that the normalization is right for all other elements of low-left matrix.

The important thing is that the matrix has a block diagonal structure, so we can look at the blocks
separately when inverting. Now, let’s look at the second part. We assume that z1t is exogenous, that is,
E(et|z1t, z1,t 1...) = 0. We do not assume that z3t is exogenous though(it may be that innovations to z− 3t

and error term et are correlated).
 √1

∑
∑z1tet 1?)

Q−1z′e =
 T N(0,

 1


√
1

 

∑ et N(0, 2?)
T

∑z3tet

 ⇒  3?( W
T
1

T 3/2 te

∫
dW )4?



N(0,t 5?)


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1? is used for the long-run variance of z1tet; 2? - for the long-run variance of et; 5? - for the limit variance (a
stronger Limit Theorem is needed here!); ?3 and ?4 denote some linear combination of stochastic integrals.
It is also known (Chen & Wei) that the first component is independent of the others.

Result :
√

T (γ̂1 − γ1) ⇒ N(0, v)

So γ̂1 asymptotically a normal distribution at the usual rate, and the OLS t-statistic for γ̂1 is asymptotically
N(0, 1). All the other coefficients will converge to non-standard distributions at different rates. In particular,
the speeds of convergence are:

√
T (γ̂2 − γ2) ⇒ something 2
T (γ̂3 − γ3) ⇒ something 3

T 3/2(γ̂4 − γ4) ⇒ something 4

Now let us consider a different regression

yt = βxt + et

where et is stationary, and regressors xt may contain stationary and non-stationary components in different
combinations. We can find a linear transformation Dxt = zt, that transform our regression into a canonical
form ( zt = [z1t z2t z3t z4t] is described above). Sims showed that such a decomposition always exists. Then

yt = γzt + et

where γ = βD−1.
So, what does this tell us about β̂? We know that β̂ = Dγ̂. A component of β̂ that is a linear

combination of γ̂1, γ̂3, and γ̂4, and its distribution will be dominated by the behavior of γ̂1 (due to its slower
convergence compared to the others). So, these components of β̂ will be asymptotically normal and converge
at
√

T . In particular, as long as we include a constant among the regressors, the coefficients that can
be represented as coefficients on the stationary regressors will be asymptotically normal and
converge at rate

√
T .

Example: Testing for Granger Causality

Suppose we have two series, y1 and y2. We want to test whether y2 Granger causes y1. We estimate

p

y1t = α +
∑ p

φiy1t−i +
i=1

∑
αiy2t−i + εt (1)

i=1

and test H0 : α1 = ... = αp = 0. Cases:

1. y1 is I(1), y2 is stationary. Then the Wald stat ⇒ χ2
p, since z1t = y2t, z1t = 1, and z3t = y1t

2. y1 is I(1), y2 is I(1), and cointegrated, i.e. a linear combination, wt = y2t − λy1t is stationary. Then
we can rewrite the regression as:

∑p ∑p

y1t = α + φ̃iy1t−i + αiwt−i + εt (2)
i=1 i=1

where φ̃i = φi + λαi. Then applying the results from above, αi converge to standard distributions,
and so does the Wald statistic. Note that we do not need to actually know wt and estimate (2).
We estimate (1) and just need to know that (2) exists, i.e. y1 and y2 are cointegrated for standard
asymptotics to apply.
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Application: Permanent Income Hypothesis 5

3. y1 and y2 are I(1), but not cointegrated. Then in general, we cannot transform α to coefficients on
stationary regressors. As a result, the Wald statistic will not converge to a standard χ2 distribution.

The lesson here is that it is important to know both whether or not series have unit roots and whether or
not they are cointegrated.

Application: Permanent Income Hypothesis

Mankiw and Shapiro (1985) tested the permanent income hypothesis by regressing

∆ct = µ + πyd
t−1 + δt + εt

where ∆ct is the change in consumption and yd
t is disposable income. The null hypothesis is H0 : π =

0. However, disposable income has a unit root, so the t-statistic associated with π has a non-standard
distribution. We can get around this problem by estimating:

ct = µ + αc d
t 1 + πyt 1 + δt + ε− − t

Under the null hypothesis ct and yd
t are cointegrated, so π will have a standard asymptotic distribution.

Stock and West (1988) pointed this out. This version of the test is easier to carry out in practice, but it
is not clear which version of the test is more powerful. Asymptotically, the first estimate of π is super-
consistent, but it has a finite sample bias of order 1

T . Because of this, the second version tends to perform
better in small samples.
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