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Filtering. State space models. Kalman filter.

State-Space Models

In this lecture we consider state-space models, which often appear in macro, as well as other areas of
economics.

Example 1. For example, suppose, GDP growth, yt is given by

yt =µt + εt

µt =µt +−1 ηt

σ2 0
where µt is the slow moving component of GDP growth and εt is noise with (εt, ηt) ∼ iidN 0, ε

0 σ2
η

. Assume that a researcher observe yt, but not the latent trend µ

( ( ))

t.

Example 2. Markov Switching

yt =β0 + β1St + εt

St ∈{0, 1}
P (St = 1|St−1 = 0) =1− q

P (St = 1|St−1 = 1) =p

If yt is GDP growth, we might think of St as representing whether or not we’re in a boom. We observe yt,
but not the latent state St.

What is common for the two examples above is that there are some observed variable yt whose behavior
depends on unobserved state (µt or St), let’s call it αt. Some questions we might want to answer in these
examples include:

1. Estimate parameters: e.g. in example 1 estimate σε and ση

2. Extract unobserved state: e.g. in example 1 estimate µt

3. Forecast future values of yt.

In a state space model, we have an (potentially unobserved) state variable, αt, and measurements, yt. Let
Yt 1 be all measurable ({y1, ..., yt 1}) variables up to time t− 1. The state space model is characterized by− −

(1) State equation, describing the evolution of state:

F (αt|αt−1,Yt−1)

(2) Measurement equation, describing how the measurable variables relate to state variables

f(yt|αt,Yt−1)
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Kalman Filtering 2

The two equations allow us to write the joint likelihood of observed variables (y1, y2, ..., yT ). There could be
some unknown parameter θ which we will drop for simplicity later on.

T T

f(y1, ..., yT ; θ) = f(y1; θ)
∏

f(yt|yt 1, ..., y =− 1; θ) f(y1; θ)
t=2 t

∏
f(yt t−1; θ)

=2

|Y

For the likelihood, we need to find f(yt|Yt 1). This can be done in three general steps and is called filtering:−

1.

f(yt|Yt 1) =
∫

f(yt|α− t,Yt−1)f(αt|Yt−1)dαt

2. Prediction equation

f(αt|Yt 1) =
∫

F (αt|αt 1, )− − Yt−1 f(αt−1|Yt−1)dαt−1

3. Updating equation

f(y ,
(

Y|Y ) = t|αt t−1)f(αt t
f αt t

|Y −1)
f(yt|Yt 1)−

On a theoretical level, this process is clear and straightforward. We go from f(α1|Y0) to f(y1|Y0) to
f(α1|Y1) to f(α2|Y1) to finally get f(y2|y1), the conditional likelihood. However, notice that the two first
steps include integration, and in practice, it is usually difficult to compute these integrals. There are two
cases where the integration is straightforward. With discrete distributions, the integrals are just sums. With
normal distributions, sub-vector of normal vector is normal, and conditionals are normal as well, this simplify
life a lot. The corresponding procedure for normals is called Kalman filter. For other situations, integration
is very difficult, one approach is called particle filtering.

Kalman Filtering

Suppose we have a state model:

αt = Tαt−1 + Rηt (1)

and a measurement:

yt = Zαt + Sξt (2)

with
(

ηt

ξt

)
∼ iidN

(
0,

(
Q 0 . Then,0 H

))

F (αt|αt ) N(Tα , RQR′)−1 ∼ t−1

f(yt|αt,Yt 1) ∼N(Zα− t, SHS′)

If α1 is normal, then since αt’s and yt’s are linear combinations of normal errors, the vector, (α1, ..., αT , y1, ..., yT )
is normally distributed. We will use the general fact that if

[
x1

] ([
µ1

] [
Σ11 Σ

N
x2

∼ , 12

µ2 Σ21 Σ22

])

then
x1|x2 ∼ N(µ,˜ Σ)˜
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Kalman Smoother 3

with µ̃ = µ1 + Σ12Σ−1
22 (x2 − µ2) and Σ̃ = Σ11 − Σ12Σ−22

1Σ21

Using this result, we see that each of the distributions in the general steps above are normal. Since the
normal distribution is characterized by mean and variance, we need only compute them. Let us introduce
the following notation:

αt|Yt 1 ∼N(αt t 1, P− | − t|t−1)
αt|Yt ∼N(αt ,|t Pt|t)

yt|Yt−1 ∼N(yt|t )−1, Ft

From equation (1), we see that

αt|t−1 =Tα(t−1|t−1 (3)

Pt t 1 =E (αt − αt t 1)(αt − αt t 1)′|Yt 1

)
= TP T ′ + RQR′ (4)| − | − | − − t−1|t−1

Here we used that αt−αt t 1 = T (αt 1−αt 1 t 1) + Rηt. These two equations can be used in step 2 above| − − − | −
(prediction equation).

Now, looking at (2), we’ll get the equations that we need for step 1.

yt|t−1 =Zαt|t−1 (5)

Ft =E
(
(yt − yt t 1)(yt − yt t 1)′ =| − | − |Yt−1

)
ZPt|t Z ′ + SHS′ (6)−1

Note that so far we have only used the linearity of of (1) and (2).
For the updating step 3, we will need to use normality.

(
αt

yt

)
?|Yt 1 ∼ N

((
αt|t−1 P

, t|t−1− yt t ?| −1

) (
Ft

))

where ? = E((αt − αt t 1)(yt − yt 1 t)′|Yt 1) = E((αt − αt t 1)(αt − αt 1 t)′Z ′| − − | − | − − | |Yt−1) = Pt Z|t−1
′. We can

use this and the general fact about normals to write the posteriority density of αt given Yt.

αt|Yt = αt|(yt,Yt 1) ∼N(α ,− t|t Pt|t)

∼N(αt|t + P Z ′F−1(y−1 t|t−1 t t − y ), P − P Z ′F−1
t|t−1 t|t−1 t t−1 t ZPt (7)|t )| −1

So, starting from some initial α1 0 and P1 0 we use (5) and (6) to get y1 0 and F1 (the conditional density of| | |
y1). Then using (7), we can get α1 1 and P1 1. From there, we use (3) and (4) to get α| | 2|1 and P2|1. Repeating
in this way, we can compute the entire likelihood (conditional on the initial conditions). We could just go
ahead and use this procedure for computing the likelihood and then estimate the parameters by MLE.

Kalman Smoother

The Kalman filter uses data on the past and current observations, Yt, to predict αt. This is what we want
for computing the likelihood. However, you might want to estimate αt. For this, you want to use all the
data to predict αt. This is called the Kalman smoother. The idea is as follows: let

E(αt|YT ) = αt|T

We know that (αt, αt+1)|Yt is normal, so

E(α |α ,Y ) =α + E
(
(α − α )(α 1

t t+1 t t|t t t|t t+1 − αt+1|t)′|Yt Pt
−
+1|t+1(αt+1 − αt+1|t)

=αt t + J| t(αt+1 − αt+1|t)

)

given that E
(
(αt − αt|t)(αt+1 − αt+1 (|t)′|Yt

)
= E

(
αt − αt|t)(T (αt − αt|t)) + Rηt+1

1

|Yt

Jt = Pt tT
′Pt
−

| +1|t. So then,

)
= Pt|tT we have

E(αt|αt+1,Yt) =αt t + Jt(α| t+1 − αt+1|t)
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Summary 4

Expectation E(αt|αt+1,YT ) is the same as E(αt|αt+1,Yt), because the knowledge of yt+j for j > 0 would
be of no added value if we already knew αt+1. That is,

E(αt|αt+1,YT ) =αt t + J| t(αt+1 − αt+1|t)

No we project the results on YT only and use the law of iterated expectations:

E(αt|YT ) =αt|t + Jt(αt+1|T − αt+1|t)

Starting from t = T and repeating in this way, we can compute αT T , α| T−1|T , ..., α1|T .
Things to remember: the Kalman filter and smoother are linear in data. The Kalman filter is a recursive

procedure running forward. After that, we can run the Kalman smoother backward.

Summary

For a state-space model,

yt =Ztαt + Stξt

αt =Ttαt−1 + Rtηt

with
(

ηt

)
∼ iidN

(
0,

[
Q 0

])
. and the initial observation y1 ∼ N(y1 0, F1). Kalman filter can be

ξt 0 H |

used for the following tasks:

• construct the conditional distribution of yt and αt given all past observations |Yt−1. We know that it
is normal, Kalman filter calculates the conditional mean yt t 1, αt t 1 and conditional variances.| − | −

• calculate a likelihood of {y1, ..., yT }
• construct the distribution of α given all observations of y, αt|YT (extract trend- Kalman smoother).

• calculate yt t 1, which is the best linear forecast of y| − t given |Yt−1 even if errors are non-normal

What can be cast into state-space form?

We can write many models in state-space form:

Example 3. AR(p):

P

yt =
∑

φiyt−1 + εt

i=1

Then our state equation is

αt =


yt

yt−1

..



=


φ1 ... φp

1 0
. .

 
εt

 .
yt−p+1

  

t

 .
0 1

 0


 

The measuremen


 αt 1 +  .− ..

0



equation is



yt = [1 0 ... 0]αt

For an AR model, it is straightforward to write down the likelihood directly, so there is no need to write
down the state-space form or use the Kalman filter. However, for MA and ARMA models, the likelihood is
very difficult to evaluate without using the Kalman filter.
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What else can be done by Kalman filter? Error-in-variables 5

Example 4. MA Model:
yt = εt + θεt−1

State equation: [
ε

]
ε

αt = t = t

ε

[
0 0
1 0

]
αt−1 +

t−1

[
0

]

Measurement:
yt = [1 θ]αt

Example 5. ARMA Model:
yt = φ1yt−1 + φ2yt + ε + θε−2 t t−1

State equation:

αt =
[

yt φ
= 1 1 yt−1 1

+ ε
φ t

2yt−1 + θεt

] [
φ2 0

] [
φ2yt + θε θ−2 t−1

] [ ]

Measurement:
yt = [1 0]αt

What else can be done by Kalman filter? Error-in-variables

State-space models can also be used to analyze error-in-variable models. Assume that we want to model the
behavior the ex ante real interest rate, ξt as (for example) an autoregressive process

ξt =φξt−1 + ut

and want to estimate φ and make future forecasts. The problem though is that the theoretical ex ante real
interest rate

ξt = it − πe
t

is not observable since the expected inflation, πe
t , is not observable. Instead we observe the realized interest

rate, it−πt (and the realized inflation). The problem can be written in a state space model with measurement
equation:

ξrealized
t = it − πt =ξt − (πt − πe

t ) = ξt + vt

and state equation:

ξt =φξt−1 + ut

Since vt = πt − πe
t is the prediction error, it’s natural to assume the iid structure of it.

Missing or unequally spaced Observations

Suppose we have a state-space model where we are missing observations. The model is:

yt =ztαt + Stξt

αt =Ttαt−1 + Rtηt

But instead of observing all {yt}T
t=1, we only observe some subset {yi1, .., yiτ} = {yi|i ∈ I}. To produce a

likelihood we can consider the following model:

yt
∗ =zt

∗αt + wt
∗

αt =Ttαt−1 + Rtηt
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Missing or unequally spaced Observations 6

where yt
∗ =

{
yt t ∈ I z t I w t I

, zt
∗ =

{
t ∈

, and wt
∗ =

{
t ∈

, with Nt ∼ iidN(0, 1).
Nt otherwise 0 otherwise Nt otherwise

Assume that we observe yt
∗ = 0 when t ∈/ I, then the conditional likelihood is

φ(0) t / I
f(yt

∗|Yt
∗
−1) =

{
∈

f(yt|{ys : s ∈ I, s < t})

and the likelihood is f(y∗
I

1 , ..., y∗ ) =
c #

T φ(0)#I f(y , ..., y ) = (2π)− c
2i1 iτ f(yi1, ..., yiτ ). It means that we can

run Kalman filter for yt
∗, it produces(up to a constant) a valid likelihood for the initial model.

Example 6. Suppose:
yt = φyt−1 + εt

and we observe t ∈ I = {1, 3, 4, 5}. In state space form, as above, we have:

αt = αt−1φ + εt

yt
∗ = ztαt + wt

I
where zt

{
1 t

=
∈ ∈ I

and wt =

{
0 t

. Let’s think what Kalman filter would do: for
0 otherwise N(0, 1) otherwise

t ∈ I we observe yt = αt, so our best linear predictor of αt is yt. For t = 2, y2 is unrelated to α2, so our best
linear predictor of α2 is just φy1. Then the conditional means used in the Kalman filter are:

αt|t =

{
yt t ∈ I

φyt t = 2−1

To form the conditional likelihood, we need the distribution of yt|Yt mean−1, which has

φy 4
yt
∗
|t−1 = t 1 t , 5

φαt−1|t−1 =

{
− ∈ { }

φ2y1 t = 3

and variance

Ft =

{
σ2 t ∈ {4, 5}
(1 + φ2)σ2 t = 3

We only need the conditional distribution at t = 3, 4, 5 because the likelihood is:

f(y1, y3, y4, y5) = f(y1)f(y3|y1)f(y4|y3, y1)f(y5|y4, y3, y1)

and the conditional (on y1) likelihood is

f(y1, y3, y4, y5|y1) =f(y3|y1)f(y4(|y3, y1)f(y5|y)4, y3, y1)

1 y 2

= 3
φ

σ 1 + φ2 σ

( ) ( )

where φ( ) is the normal pdf.

√ √− φ y1 1 y4 − φy3 1 y5
φ

− φy4
φ

1 + φ2 σ σ σ σ

·
The nice thing is that Kalman filter does this reasoning automatically.
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