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Lecture 3

More HAC and Intro to Spectrum

HAC

Continuing with our setup from last time:

• {zt} stationary

• γk = cov(zt, zt+k)

• J =
∑∞

k= γ−∞ k

we want to estimate J . Last time, we first considered just summing all the sample covariances. This
was inconsistent because high order covariances will always be noisily estimated. Then we considered a
truncated sum of covariances with bandwidths slowly increasing to infinity. This may be consistent (under
certain conditions), but could lead to a not positive definite Ĵ . To fix this, we considered the kernel estimator:

ST 1J =
∑ T−j

ˆ kT (j)γ̂j , γ̂j =
∑

ztzt+j
T−ST t=1

We want to choose ST and k ˆ ˆ
T () such that (1) J is consistent and (2) J is always positive definite.

Consistency

Theorem 1. Assume that:

• ∑∞ |γ <−∞ j | ∞
• kT (j) → 1 as T →∞ and |kT (j)| < C ∀j and some constant C

• for all j a sequence ξt,j = ztzt+j−γj is stationary and supj

∑
k |cov(ξt,j , ξt+k,j)| < C for some constant

C (limited dependence)
3• ST →∞ and ST

T → 0

then Ĵ =
∑ST

−S kT
T

(j)γ̂j is a consistent estimator of J
Proof. This is an informal “proof” that sketches the ideas, but isn’t completely rigorous.

Ĵ − J =−
∑ ST ST

γj +
∑

(kT (j)− 1)γj +
∑

kT (j)(γ̂j − γj) (1)
|j|>ST j=−ST j=−ST

We can interprete these three terms as follows;

1.
∑
|j|>S γj

T
is truncation error
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Consistency 2

2.
∑ST

j= ST
(kT (j)− 1)γj is error from using the kernel−

3.
∑ST

j= S kT
T

(j)(γ̂j − γj) is error from estimating the covariances−
Terms 1 and 2 are non-stochastic. They represent bias. The third term is stochastic; it is responsible for
uncertainty. We want to show that each of these terms goes to zero. We also will put special attention to a
bias-variance tradeoff arising in this problem.

1. Disappears as long as ST →∞, since we assumed ∞
−∞ |γj | < ∞.

2.
∑ST

j= S (j
T
(kT ) 1)− − γj∑≤

∑ST

j= k (j) 1 γ This will converge to zero as long as k (j) 1 as−S | T − || j |

∑

TT
→

T →∞ (we use here ∞ |γ C−∞ j | < ∞ and |kT (j)| < ∀j).
3. Notice that for the first term we wanted ST big enough to eliminate it. Here, we’ll want ST to be small

enough.

First, note that T j
γ̂ ≡ 1

∑ −
z z is not unbiased. Eγ̂ = T−j

j T k=1 k k+j j γjT = γ̃j . However, it’s clear that this
bias will disappear as T →∞. Formally,

∑ST ST ST

kT (j)(γ̂j − γj) =
∑

kT (j)(γ̂j − γ̃j) +
∑

kT (j)(γ̃j

j=−ST j=−ST j=−S

− γj),
T

and the last term goes to zero for exactly the same reasons as 2.

As for the first summand let’s consider ξt,j = T j
ztzt+j − γj , so γ̂j − γ̃ = 1

j
−

T τ=1 ξτ,j . We need to assess
the speed with which the sum of ξt,j converges to zero in probability.

∑

1
T−j T−j

E(γ̂j − γ̃ )2j = cov(ξk,j , ξt,j)
T 2

k

∑

=1

∑
t=1

1
T−j

≤
T 2

k

∑ T−j

=1

∑
t=1

|cov(ξk,j , ξt,j)|

We need an assumption to guarantee that the covariances of ξ disappear. The assumption that ξt,j are
sationary for all j and supj

∑
k |cov(ξt,j , ξt+k,j)| < C for some constant C implies that

1
T−j

T 2
k

∑ T−j

=1

∑ C

t=1

|cov(ξk,j , ξt,j)| ≤
T

By Chebyshev’s inequality we have:

E(γ̂j − γ̃ 2
j) C

P (|γ̂j − γ̃j | > ε) ≤
ε2

≤
ε2T

This characterize the accuracy with which we estimate each covariance. Now we need to assess how
many auto-covariances we can estimate well simultaneously:

∑ST ∑ST ε
P ( |γ̂j − γ̃j | > ε) ≤ P (|γ̂j − γ̃j | > )

2ST + 1−ST −ST

ST

≤
∑ E(γ̂j − γj)2 (2S + 1)2T

ε2−ST

ST

≤
∑ C

(2ST + 1)2
S3

T−S

≈ C T
1

T
T

3

so, it is enough to assume ST

T → 0 as T →∞ to make the last term in (1) go to 0 in probability.
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Positive Definiteness 3

We used the assumption that S3
T /T → 0. In fact, we could do better than that, but it requires a little

bit more work.

Positive Definiteness

Now we will address the question of positive definiteness of the estimate of long-run variance. It is easiest
to characterize positive definiteness using the Fourier transformation. To do this I will refresh your memory
about complex numbers. We also will need this material for the spectrum.

Complex Numbers

Definition 2. i =
√−1

We write complex numbers in rectangular as a+bi, where a and b are real. We add and multiply complex
numbers as:

(a + bi) + (c + di) =a + c + (b + d)i
(a + bi)(c + di) =ac− bd + (bc + ad)i

We can also write complex numbers in polar form as

r(cos φ + i sin φ) = reiφ

which simplifies multiplication

r1e
iφ1r2e

iφ2 = r i
1r2e

(φ1+φ2)

Fourier Transfrom

Definition 3. Given a series {xt}∞ , the Fourier transform is dx(ω) = ∞
t= x −
−∞ te

iωt
−∞

Definition 4. The inverse Fourier transform of dx(ω) is xt = 1 π
eiω

∑

td− x ω2π π
( )dω

As the names suggest, these operations are the inverse of one another.

∫

Proof.

1
∫ π 1 π

eiωtdx(ω)dω =
2π π 2π−

∫
eiωt

−π

∑
e−iωsxsdω

∫ s
π

=
∑ 1

xs eiω(t−s)dω
2π

s −π

=xt

where the last line froms from the fact that

1
∫ π 1 k = 0

eiωkdω =
2π −π

{

0 k = 0

Now we are ready to characterize kernels that would lead us to non-negative estimates of J . Assume
kT (j) is an inverse Fourier transform of KT (ω), i.e.

1
kT (j) =

∫ π

K (
2 T ω)e−iωjdω
π −π
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Last comments on the estimation of long-run variance. 4

Lemma 5. Ĵ is non-negative with probability 1 if and only if KT (ω) ≥ 0 and KT (ω) = KT (−ω)

Proof. Let us introduce Fourier transform of zt: dz(ω) = 1 T
z iωt
teT t=1
− , and what’s called a periodiogram

I(ω) = 1 dz(ω)dz(ω
′

2π ) . We wish to show that

√ ∑

Ĵ =
∫ π

KT (ω)I(ω)dω (2)
−π

Indeed
∫ π 1

KT (ω)I(ω)dω =
∫ π

(
1 T

KT (ω)
∑ T

z e t

π 2 t
−iω

π T− −π t=1

∑
zs
′ e+iωs

s=1

)
dω =

1 T

=
∑∑T 1 π ( T T

z z′
∫

K (ω)e−iω(t )
t s T

) 1−s dω =
∑∑

ztz s) = J .
T 2 skT (t

π T
t=1 s=1

−
−π t=1 s=1

But what we can notice is that if K is symmetric, then k
̂

T is real. If in addition K is p

̂

ositive, then (2)
implies that J is positive. The inverse is also true, in a sense that if any realization of {zt}T

t=1 is possible,
then to guarantee that Ĵ is positive we need positiveness of K.

Last comments on the estimation of long-run variance.

Below are some examples of good kernels (that satisfy the positiveness condition).

1 x x [0, 1]
Definition 6. Bartlett kernel kT (j) = k(j/ST ) where k(x) =

{
− | | ∈

0 otherwise
Newey-West (1987) (this is one of the most cited papers in economics) suggested to use Bartlett kernel.

1− 6x2 − 6|x|3 0 ≤ x ≤ 1/2
Definition 7. Parsen kernel k(x) =




2(1− |x|)3 1/2 < x ≤ 1
0 otherwise

Bandwidth How do we choose S



T ?



The general idea here is that we are facing a bias-variance trade-off.
Namely, the bigger ST reduces the cut-off bias, however, it increases the number of estimated covariances
used(and hence the variance of the estimate). One idea of how to assess the quality of estimate is to minimize
the mean squared error (MSE)

MSE(Ĵ ) = E(Ĵ − J )2 = bias(Ĵ )2 + var(Ĵ )

1 est
Andrews (1991) did this minimization. His findings are: S = constTC for Newey-W

T , where C =

{
3
1

.
5 for Parsen

Andrews also gives a formula for const. This constant depends on properties of the process and is quite
complicated.

Keifer & Vogelsang Keifer & Vogelsang (2002) consider setting S ˆ
T = T 1. This gives inconsistent

estimate(as we’ve seen on the last lecture). However, ˆ
− J

J usually isn’t what we care about. We care about
testing β̂, say by looking at the t statistic. We can use Ĵ with ST = T − 1 to compute t = β̂

ˆ , which will
se(β)

converge to some (non-normal) distribution. What is important here that this distribution does not contain
any nuisance parameters (even though it depends on the kernel used). Why it is important: we can simulate
this distribution (bootstrap)and perform testing. The motivation for doing this is that Newey-West often
works poorly in small samples due to bias.
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Spectrum 5

Spectrum

Spectral density

Definition 8. Spectral density is the Fourier transform of covariances

e
j

∑∞
S(ω) = −iωjγj = γ(e−iω)

=−∞

(where γ() is the covariance function from lecture 1)

Example 9. ARMA: a(L)yt = b(L)et

γ(ξ) =σ2 b(ξ)b(ξ−1)
a(ξ)a(ξ−1)
b(e−iω

2 )b(eiω)
S(ω) =σ = σ2 |b(eiω)|2

a(e−iω)a(eiω) |a(eiω)|2

Why use the spectrum?

• Easier to write down and work with than covariances

• Spectral decomposition

Filtering

We have a series {xt}
Definition 10. We filter the series by B(L) to produce yt = B(L)xt, where B(L) might include both
positive and negative powers of L.

The spectral density of y is related to the spectral density of x by a simple equation

Sy(ω) = Sx(ω)|B(eiω)|2

Note that we can also write the covariances of y in terms of the covariances of x, but the relationship is not
so simple

yγk =cov(y
∑t, yt+k)

=cov( bjxt−j ,
j

∑
blxt+k−l)

l

=
∑

b x
jblγk−l+j

j,l
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