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Lecture 5

Spectrum Estimation and Information Criteria

Spectrum Estimation

Same∑ setup as last time. We have a stationary series, {zt} with covariances γj and spectrum S(ω) =
∞ iωj
j= γje

− . We want to estimate S(ω).−∞

Näıve approach

We cannot estimate all the covariances from a finite sample. Let’s just estimate all the covariances that we
can

1 ∑T

γ̂j = zjzj
T

−k

j=k+1

and use them to form

T−1

Ŝ(ω) =
j=−

∑
γ̂je

−iωj

(T−1)

This estimator is not consistent. It convergers to a distribution instead of a point. To see this, let yω =
T√1

∑
t=1 e−iωtzt, so that

T

Ŝ(ω) = yω ȳω

If ω = 0

2Ŝ(ω) ⇒ S(ω)χ2(2)

Kernel Estimator

ST

ˆ j
S(ω) =

∑
1

j=−ST

( | |−
ST

)
γ̂je

−iωj

Under appropriate conditions on ST (ST →∞, but more slowly than T ), this estimator is consistent1 This
can be shown in a way similar to the way we showed the Newey-West estimator is consistent.

1In a uniform sense, i.e. P
(
supω∈[−π,π] |Ŝ(ω)− S(ω)| > ε

)
→ 0

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6

http://ocw.mit.edu


Choosing the right order 2

Choosing the right order

Suppose you want to estimate an AR(p), but you don’t know the right p. The question arises how to choose
the right order? There are two different setting. The first one is when you know that the true p does not
exceed a known upper limit p < ∞. The second case is when we cannot bound p from above, that is, when
p̄ = ∞.

Testing down

We’ll begin with the first case. A bad way (a naive way) is testing down : We start with a general AR(p)
and test (1)

H0 : AR(p̄− 1) vs (1)
HA : AR(p̄) by testing that the coefficient ap̄ is zero. If we accept, then we’ll

test p̄− 2 vs p̄− 1. Continue until rejecting.
There are two issues with this approach:

• If we consider this as a testing procedure, then the size is very difficult to control because we’re doing
multiple testing. In other words, the individual significance level of each test differs from the probability
of type I errors of the entire procedure. For example, to choose p you have to accept p̄ pH0 , ...,H0 and
reject pH −1

0 . These all are dependent hypothesis. What is the type one error in this procedure?

• If you consider this procedure as estimation, it won’t be consistent. Imagine that you are choosing
between two models AR(1) and AR(2) by testing H0 : a2 = 0. We’ll incorrectly reject the true null α
portion of the time even in the large sample (remember the definition of significance).

Using information criteria

Let Sp = ln σ̂2 + pg(T ), where σ̂2
p = 1

T t ê2
t and êt are the residuals from the model with p terms (in the

multivariate case we’d use det ˆ|Σ| in place of σ̂2). pg(T ) is a penalty term for having more parameters, where
g(T ) is a non-random function. We cho

∑

ose

p̂ = arg minSp
p≤p̄

Different forms of g(T ) have special names

Definition 1. AIC (Akaike): g(T ) = 2
T

BIC (Bayesian/Schwartz): g(T ) = ln T
T

HQIC (Hannan-Quinn): g(T ) = 2 ln ln T
T

Consistency

We will approach model selection as an estimation procedure. One of the characteristics of an estimator is
consistency. Let p0 be the true unknown order.

Definition 2. p̂ is weakly consistent if lim P (p̂ = p0) = 1 (when we just say “consistent”, we mean weakly
consistent)

Definition 3. p̂ is strongly consistent if P (lim p̂ = p0) = 1

Theorem 4. If g(T ) → 0 and →pTg(T ) →∞, then p̂ p0

Proof. As usual, we will only sketch the proof. In this proof we would assume that Sp as a function of p has
a U-shape (we would not prove this).

Lemma 5. If g(T ) → 0, then P (p̂ ≥ p0) → 1
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Proof. Note that

P (p̂ ≥ p0) =P ({Sp0 < min{S0, S1, ..., Sp0−1}) =

=P log{σ̂
2
p0

+ p0g(T ) < log σ2
j + jg(T ), ∀j = 0, ..., p0 − 1

=1− P log σ̂2
p0

+ p0g(T ) <

̂
log σ2

j + jg(T ), for some j =

}

0, ..., p0 − 1
p0−1

≥1−
∑

P
{
log σ̂2

p0
+ p g

}

0 (T ) <

̂

log σ2
j + jg(T )

j=0

}

For each j < p0 the true variance of the residual in AR(j

̂

) is bigger than the residual in AR(p0) (since
2

AR(p0) is the true model). That is, σj

σ2 > 1. Given that, σ̂ 2
j are consistent estimators of σ2

j , we have
p0

2 2σ̂j

σ̂2 → σp j Tσ2 > 1. Since g( ) → 0, we obtain
p0 p0

P

(
σ̂2

log j − (p0 − j)g(T ) > 0 1
σ̂2

p0

)
→

for each j < p0, and since there are only finitely many j < p0, we have

p0−1

P (p̂ ≥ p0) ≥1−
∑

P
{
log σ2 2

p0
+ p0g(T ) < log σj + jg(T )

j=0

} → 1

Lemma 6. If Tg(T ) →∞ then P (p̂ ≤ p0) → 1.

Proof. As above, note that

P (p̂ ≤ p0) =P (Sp0 < min( {Sp0+1, Sp0+1, ..., Sp̄})
σ̂2

=P log j − (p0 − j)g(T ) > 0 , j = p
σ̂

0 + 1, .., p̄
2
p0

)

We can multiply both sides of the inequality by T without changing the probability:

P (p̂ ≤ p0) =P

(
σ̂2

T log j − (p0 − j)Tg(T ) > 0 , j = p0 + 1, .., p̄
σ̂2

p0

)
(1)

One can notice that the Likelihood ratio (LR) statistic for testing H0 : AR(p0) vs the alternative Ha : AR(j)
(the same as testing simulteneously j − p0 restrictions aj = ... = ap0+1 = 0) is

σ̂2

LR = − j
T log

σ̂2
p0

⇒ χ2
j−p0

2

if the null is true. That is, T log σ̂j

σ̂2 is negative but bounded in probability. If Tg(T )
p0

→∞, then

σ̂2

P{T log j + (j p0)Tg(T ) > 0 1
σ̂2

p0

− } →

for each j. Since we have a finite number of these events, the needed probability (1) converges to 1.
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Remark 7. Note in the proof of the previous lemma that if Tg(T ) → const < ∞, then lim P{p ≤ p0} < 1;
that is, we have overestimation of the order.

Remark 8. The proof so far has been for weak consistency. If we additionally have g(T )T >2 ln ln T 1,

̂

then p̂ → p
a.s., so p̂ is strongly consistent.

Corollary 9. BIC is strongly consistent. HQIC is consistent. AIC is not; it has a positive probability of
overestimating the number of lags asymptotically.

Why do we need consistency?

Assume that we are interested in estimating coefficients of AR(p0). Then what problem do we face if choose
wrong order of the model? If we choose p too small, then the estimated coefficients will be biased (think:
omitted variable bias). If we choose p too large, then our estimates of coefficients will be inefficient (variance
is bigger).

When p̂ is consistent, estimating an AR(p) model in this 2-step way has the same asymptotic distribution
as if we knew p0. Let’s sketch this argument. Let β(Mp) is estimate if model Mp is true. The two-step
estimate then is

∑p̄

β = β(

̂

Mp)I{p
p=0

̂=p .}

What do we know about the distribution of

˜

β

̂

˜?

P
{

β̃ ≤ s
}

= P
{

β̂(Mp) ≤ s|p = p P {p = p}

If we have consistency P{p =

}
̂ ̂

̂ p0} → 1, then asymptotically

P
{

β̃ ≤ s
} ∼= P

{
β̂(Mp0) ≤ s

A word of causion, in finite samples, not knowing p can make a

}

difference, and the finite sample distri-
bution of our estimates is influenced by model selection.

AIC and forecasting

Despite its inconsistency for picking the number of lags, the AIC is not useless. The choice of info criterion
should depend on the problem at hand. AIC minimizes MSE for one-step ahead forecast.

If the goal is to do a good forecasting one may come up with the following idea: we want to forecast y
based on x: yt = βxt + ut, and are thinking what to include into x. You may think of AR(p) as predicting
yt from yt 1, ..., yt p. Let’s do this forecasting exercise as a real-time process. That is, assume you to ok− −
AR(p) as a model. When you have data from time 1 to time t− 1 you can calculate estimate β̂t−1 based on
this observations only and then predict yt and check how well you did. That is,

β̂ = (X ′ X )−1
t−1 t−1 t 1 Xt

′ y− −1 t−1

ŷt|t−1 = β̂t x−1 t

T

PLS(p) =
t

∑
(y y 2

t

=m

− t|t−1)
+1

PLS stays for predicted least squares. You may wish to choose the order of the model based on how well
it does on this predicting task: p̂ = PLS(p). Here m is the first observation for which you start doing

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu),
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

http://ocw.mit.edu
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predictions.
Wei (1992) shows that for m fixed

1 1
PLS(p) =SBIC

p + o( )
T −m T

p̂PLS =p̂BIC + op(1)

Innoue and Killian (2002) shows that if m = cT

1
PLS(p) = SAIC 1

p + o( )
T −m T 2

Discussion

• A larger point is that the best model selection criteria depends on what your goal is. For the estimation
it may be different than for forecasting.

• Information criterion can be thought of as “sequential testing” but with changing critical values

• Consistent estimation guarantees asymptotic efficiency of estimation, but can behave poorly in finite
samples.

• The main problem however is that we don’t know p̄(p̄ = ∞)

On the case of p̄ = ∞.

Example 10. Suppose we want to estimate the spectrum by fitting an AR(∞) model.
∞

a(L)yt = eta(L) = 1 +
∑

ajL
j

j=1

The spectrum is

σ2

S(ω) = |1 + ∞ 2
j=1 aje−iωj |

From this, we see that what we really want to estimate

∑

is the infinite sum in the denominator. There are
two approaches

3

1. Estimate AR(pT ), let p
pT →∞, but not too fast, say T

T →∞. This procedure will give us a consistent
estimate of the spectrum. To see this, consider:

∑∞ ∑pT ∞
| aje

−iωj − âje
−iωj

j=1 j=1

| ≤
∑

j=1

|aj − âj |

By a similar argument to what we used to show the consistency of HAC, we could show that
∑∞

j=1 |aj−
âj | → 0

2. Same pT , but choose p̂ = minp pT
BIC(p). Then estimate AR(p̂) and compute the spectral density.≤

If p a p̂
T = (ln T ) , 0 < a < ∞, and if (i) p0 < ∞ then P (p̂ = p0) → 1, or if (ii) p0 = ∞, then ln T → 1

and sup |S(ω) ˆ− S(ω)| →p 0.
Remark 11. Of course,)the condition pT = (ln T )a

( that is a bit difficult to interprete in practice. For
/

T 4
1 3T 1 T50 4 (ln )2

50 4 4example,
250 7 8
2500 15 15
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