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Lecture 6

GMM

This lecture extensively uses lectures given by Jim Stock as a part of mini-course at NBER Summer
Institute.

Intro to GMM

We have data zt, parameter θ, and moment condition Eg(zt, θ0) = 0. This moment condition identifies θ.
Many problems can be formulated in this way.

Examples

• OLS: we have assumption that yt = x′tβ+et and Eetxt = 0. We can write this as a moment condition,
E[xt(yt − x′tβ)] = 0, that is, g(xt, yt, β) = xt(yt − x′tβ).

• IV: Consider a case when yt = x′tβ + et, but the error term may be correlated with the regressor.
However, we have so called instruments zt correlated with xt but not correlated with the error term:
Eetzt = 0 This gives the moment condition E[zt(yt − x′tβ)] = 0, and g(xt, yt, zt, β) = zt(yt − x′tβ).

• Euler Equation: This was the application for which Hansen developed GMM. Suppose we have
CRRA utility, u(c) =

1c −γ−1
1 γ . An agent solves the problem of smoothing consumption over time−

(inter-temporal optimization). The first order condition from utility maximization gives us the Euler
equation,

E

[
β

(
ct+1

)−γ
Rt+1

ct
− 1|It

]
= 0,

where It is information available at time t (sigma-algebra of all variables observed before and at t).
For any variable zt measurable with respect to It, we have

γ
c

E

[(
β

(
t+1

−

Rt+1 1 zt = 0,
ct

)
−

) ]

This moment condition can be used to estimate γ and β.

Estimation

Take the moment condition and replace it with its sample analog:

1 T

Eg(zt, θ) ≈
∑

g(zt, θ) = gT (θ)
T

t=1
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Estimation 2

Our estimate, θ̂ will be such that gT (θ̂) ≈ 0. Let’s suppose θ is k × 1 and gT (θ) is n × 1. If n < k, then θ

is not identified. If n = k (and dg
dθ (θ0) is full rank), then we are just identified, and we may find θ̂ such that

gT (θ̂) = 0. If n > k (and the rank of g′(θ0) > k), then we are overidentified. In this case, it will generally be
impossible to find θ̂ such that g ˆ

T (θ) = 0, so we instead minimize a quadratic form

θ̂ = arg min gT (θ)′WT gT (θ)
θ

where WT is symmetric and positive definite.
Some things we want to know:

1. Asymptotics of θ̂

2. Efficient choice of Wt

3. Test of overidentifying restrictions

Assumptions

1. Parameter space is compact

2.
p

WT → W

3. For function g0(θ) = Eg(zt, θ) assume that g0(θ0) = 0 and Wg0(θ) = 0 for any θ = θ0 (identification)

4. Function g0(θ) is continuous

5. Assume that gT (θ) converges uniformly in probability to g0(θ)

Theorem 1. Under assumptions 1-5 estimator
p

θ̂ is consistent, that is, θ̂ → θ0.

If zt is strictly stationary and ergodic sequence, g(zt, θ) is continuous at each θ with probability one and
there is d(z) such that ‖g(z, θ)‖ ≤ d(z) and Ed(z) <∞, then Assumptions 4 and 5 above are satisfied.

Assumptions

6. θ0 is in the interior of the parameter space and gT (θ) is continuously differentiable in the neighborhood
of θ0

7. √1
∑T
t=1 g(zt, θ0)

T
⇒ N(0, S)

8. There is R(θ) continuous at
p

θ and T
0 such that 1 ∂g

t=1 (zt, θT ∂θ ) → R(θ) uniformly

9. For R = R(θ0) we have that RWR′ is non-singular

∑

Note that we’re just assuming that some CLT and LLN apply to the above quantities. We can deal with
non-iid observations as long as a CLT and LLN apply.

This is the simplest possible setup, for example it requires g to be differentiable, this condition can be
relaxed.
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Estimation 3

Asymptotic Distribution

Theorem 2. Under assumptions 1-9, θ̂ is asymptotically normal.
√
T (θ̂

1

− θ)⇒ N(0,Σ)

Σ = (RWR′)− (RWSW ′R′)(RWR′)−1

Proof. (Sketch of the proof) To prove this, we take a Taylor expansion of the first order condition. The first
order condition is:

∂g )
gT ( )′ T (θ

θ WT
∂θ

| ˆθ=θ = 0

Expanding gT (θ) around θ0

√ ∂g(θ0)
Tg θ̂T ( ) =

√
TgT (θ0) +

√
T (θ̂

∂θ
− θ0) + op(1)

We’ve assumed that
√

∂TgT (θ0) ⇒ N(0, S), g(θ0) p
R∂θ → . Then, putting our expansion into the first order

condition, rearranging, and using these convergence results, we get

√
(ˆ ∂g− ) =( T

′ ∂gT
′

T θ θ0 WT )−1 ∂g
( T

WT

√
TgT )

∂θ ∂θ ∂θ

⇒(RWR′)−1RWN(0, S)

Efficient Weighting Matrix

Lemma 3. The efficient choice of W is S−1. This choice of W gives asymptotic variance Σ̃ = (RS−1R)−1.
For any other W , Σ ˜− Σ is positive semi-definite.

In practice, we do not know S. There are several options available:

• Feasible efficient GMM:

Choose arbitrary W , say I, get initial estimate θ1, use it to calculate Ŝ (in time series, we need to use
Newey-West to estimate Ŝ), then re-run GMM with WT = Ŝ−1

• We can also iterate this procedure, or put S(θ) to do continuous updating estimator (CUE) GMM.

Under assumptions above these alternatives have the same asymptotic variance. In IV Feasible efficient
GMM corresponds to TSLS, CUE is the same as LIML.

Tests of Over-identifying Restrictions When we have more moment conditions than unknown pa-
rameters we may test whether model is correctly specified (that is, whether the moments conditions jointly
hold).

J = [
√
Tg(z, θ̂)]′Σ̂−1[

√
Tg(z, θ̂)]⇒ χ2

n−k

Under the null that all moment conditions are true, the statistic, J , converges to a χ2
n−k. Large values of

J-test lead to rejection.

Remark 4. This is a test of all the restrictions jointly. If we reject, it does not tell which moment condition
is wrong. It merely means the moment conditions contradict one another.
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Weak IV 4

Weak IV

Weak IV problem arises when due to weak correlation between instruments and regressor causes the distribu-
tions of IV estimators and test statistics are poorly approximated by their standard asymptotic distributions
(normal and chi-squared). The problem is not directly related to non-identification or partial identification
(when only part of the unknown parameter is identified). We assume that all the parameters are identified
in classical sense. The issue concerns only the quality of classical asymptotics.

Consider a classical setup (with one endogenous regressor, no covariates for simplicity):

yt = βxt + ut

xt = Ztπ + vt,

where xt, yt are one-dimensional, Zt is k × 1 and EutZt = 0.
A GMM estimator for this moment condition solves the following minimization problem: (y−βx)′ZWZ ′(y−

βx) → minβ and thus, β̂ = (x′ZWZ ′x)−1(x′ZWZ ′y). The optimal matrix is W = (Z ′Z)−1. It leads
to the estimator called two-stage least squares (TSLS). The usual TSLS will be β̂ P

SLS = x′ Zy
T ,x′PZx

where
PZ = Z(Z ′Z)−1Z ′. The problem of weak identification arises when moment conditions are not very in-
formative about the parameter of interest ∂g(θ0) |θ=θ R∂θ 0 = (θ0) = Z ′X is small (weak correlation between
instruments and regressor). Below are some known applied examples where the problem arises (Stock and
Watson mini-course at NBER Summer Institute is an excellent reference).

Return to education and quarter of birth. In Angrist Kreuger (1991), yi is log of earning, xi is years of
education, zi quarter of birth. Read the paper for explanations. Bounder, Jaeger, Baker (1995) showed that
if one randomly assigns quarter of birth and run IV s/he would obtain results close to initial (but instruments
are irrelevant in this case!!!). What is important here is that Angrist and Kreuger obtained quite narrow
confidence sets (which usually indicates high accuracy of estimation), in a situation when there are little
information in the data. It raises suspicions that those confidence sets have poor coverage and are based
on poor asymptotic approximations. Nowdays, we can assign this example to weak or many instruments
setting.

Elasticity of inter-temporal substitution . Let ∆ct+1 be consumption growth from t to t + 1, ri,t+1

be a return on asset i from t to t+ 1. The linearized Euler equation is

E [(∆ct+1 − τi − ψri,t+1)|It] = 0

For any variable Zt measurable with respect It we have

E [(∆ct+1 − τi − ψri,t+1)Zt] = 0

Our goal is to estimate ψ. It could be done in two ways:

• Run IV (with instruments Zt) in:
∆ct+1 = τi + ψri,t+1 + ut

• Run IV (with instruments Zt) in:

ri,t+1 = µi + γ∆ct+1 + ut, ψ = 1/γ

Finding in literature: 95% confidence sets obtained by two methods do not intersect(!!!) Explanation: the
second regression suffers from weak instrument problem, since it is routinely very difficult to predict change
in consumption.
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Philips curve .
πt = λxt + γfEtπt+1 + γbπt−1 + et

GMM estimated moment condition:

E [(πt − λxt − γfπt+1 + γbπt−1)Zt ] = 0 Z I−1 t−1 ∈ t−1

It is very different to predict πt+1 beyond πt 1 by any variables observed at time t− − 1, that causes weak
relevance of any instruments.
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