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Lecture

Weak IV.

This lecture extensively uses lectures given by Jim Stock as a part of mini-course at the NBER Summer
Institute.

1. What are Weak Instruments?

Consider the simplest classical homoskedastic IV model:

yt = βxt + ut

xt = Ztπ + vt,

where yt are one-dimensional, xt is n × 1, Zt is k × 1 and EutZt = 0, one observes i.i.d. data {yt, xt, Zt}.
Assume that n ≤ k. In general ut and vt are correlated, and thus, xt is an endogenous regressor. Zt is
exogenous (since we assumed that EutZt = 0), if it also relevant (EZ ′x has rank n), then it can serve
as instrument and the model is identified. The usual TSLS will be β̂TSLS = (x′PZx)−1x′PZy, where
PZ = Z(Z ′Z)−1Z ′.

The problem of weak identification arises when moment conditions are not very informative about the
parameter of interest, that is, when the rank of the matrix ∂g0(θ0) |θ=θ R∂θ 0 = (θ0) = EZ ′x is n, but at
the same time it is very close to a reduced rank matrix (for example, the smallest eigenvalue of n × n
matrix x′Z(Z ′Z)−1Z ′x is very close to zero). In the case of 1 instrument and 1 endogenous regressor weak
identification corresponds to a weak correlation between the instrument and the regressor.

To explain the essence of weak IV problem we start with a toy example of totally irrelevant instruments.

Not relevant instrument. Imagine a situation when one has 1 endogenous regressor and 1 instrument
which is independent of everything (totally irrelevant, π = 0). That is, the instrument is not valid and β is
not identified. The question is how β̂TSLS behaves? This should explain what we see in Bounder, Jaeger,
Baker’s (1995) “random quarter of birth” exercise:

β̂TSLS − β0 =
∑ √1∑Ztut = T
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(
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)
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v , then ξu = δξv+ξ, and β̂
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v

−β0 ⇒ δ+ ξ .ξv

Conclusions:

β̂• TSLS is inconsistent (as expected, since β is not identified).

β̂• TSLS is centered around β0 + δ (since ξ
ξ has symmetric distribution ), which is the limit of OLS.

v

• Asymptotically β̂TSLS has heavy tails (since ξ
ξ has Cauchy distribution )

v
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Concentration parameter 2

Non-uniform asymptotics If the instrument is relevant EZtxt = 0, then as the sample size (T
β̂

→ ∞)
increases TSLS is consistent and asymptotically normal. If EZtxt = 0, as shown before, the asymptotics
breaks down. So, the correlation equals zero is a point of discontinuity of asymptotics. That is, the limit
of
√
T (β̂TSLS − β0) depends on the value of EZtxt, which is a nuisance parameter (parameter that we

do not care about per se, but which affects the distribution) in this case. It means that the convergence
of
√
T (β̂TSLS − β0) to normal distribution is not uniform with respect to the nuisance parameter. That

is, if EZtxt = 0 but is very small, the convergence is slow and it requires a larger sample to allow for
normal approximation to be accurate. One may hope that another asymptotic embedding will provide
better asymptotic approximation.

Concentration parameter

Consider the same IV model as before

yt = βxt + ut

xt = Ztπ + vt,

but now assume one endogenous regressor (n = 1) and several instruments k ≥ 1. Introduce a concentration
parameter µ2 = π′Z ′Zπ/σ2

v . Then

ˆ x′PZu (Zπ + v)′P π′Zu+ v′P
βTSLS − Zu Zu

β0 = = = .
x′PZx (Zπ + v)′Z(Z ′Z)−1Z(Zπ + v) µ2σ2

v + 2π′Zv + v′PZv

Let’s assume that instruments are fixed and errors are normals. Let us introduce = π′
ξ Zu
u √ , ξ

π′Z′ v =
Zπσu

π′
√ Zv , S = v′PZv , and S = u′PZv . Then ξ and ξ are standard normal, and distribution of S
π′Z′ vv 2 uv u v vvZπσv σ σuσv

and Suv does not dep
v

end on sample size (chi-squared). Finally, we have:

σ
( ˆ − ) = u ξu + Svu/µ
µ βTSLS β0 .

σv 1 + 2ξv/µ+ Svv/µ2

Notice, that in this expression µ plays the role of the sample size! If µ is large, µ(β̂TSLS − β0) will be
approximately normal, if µ is small, then the distribution is non-standard. That is, µ is an effective nuisance
parameter here, and it measures the amount of information data have about the parameter β.

Weak instruments asymptotics

Weak instrument asymptotics is the name for asymptotic embedding modeling correlation as converging to
zero at speed

√
T . It is the same as modeling µ being constant. So, assume that π = C/

√
T . Then

(λ+
β̂

z
TSLS − β0 ⇒ v)′zu

,
(λ+ zv)′(λ+ zv)

σ2 σ
where (zu, zv) ∼ N(0,Σ), Σ =

(
u uv Q

σ σ2

)
. λ = C ′

1/2
QZZ , ZZ = EZtZt

′.
uv v

What is also important here is that under this nesting (weak instrument asymptotics) the first-stage
F-statistic (for testing all coefficients on instruments are zeros) converges in distribution to a non-central χ2

k

with non-centrality parameter µ2/k.

2. Detecting Weak Instruments

There are several approaches to detect whether one has a weak instrument problem:
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3. Inference methods robust towards weak instruments 3

(1) Compare the first-stage F statistic with a cut-off (Stock, Yogo). Assume we have a homoskedastic IV
model with one endogenous variable xt and some exogenous variables Wt

yt = βxt + γWt + ut

where yt and xt are one-dimensional. EWtut = 0. The data you observe is i.i.d. Let Zt be a k × 1
instrument, in particular, EutZt = 0. The first-stage regression in this case is

xt = Ztπ + δWt + vt,

and the relevance condition means that π = 0. The weak instrument problem arises when π ≈ 0. Stock
and Yogo showed that the first-stage F -statistic is distributed as a non-central χ2 with a non-centrality
parameter directly related to the concentration parameter µ. As a result, the first-stage F -statistic
can serve as an indicator of the value of µ.

Idea: look at the first-stage F-statistics since it is an indicator of µ2 and choose a cut-off that would
guarantee either relative bias less than 10% (for estimation) or the size of 5% test being less than 10%
(for testing and confidence sets). By relative bias we mean the following: the maximum bias of TSLS
is no more than 10% of the bias of OLS.

Realization:

– then the first stage F-statistic is the statistic for testing π = 0 in the first stage regression
xt = πZt + δWt + vt.

– We know that EF = 1 + µ2/k, so we can estimate µ2/k as F − 1.

– Compare the obtained µ2/k with cut-off (tables in Stock, Wright and Yogo). Note that the cut-
offs are far higher than the critical values for the F-test (weak instruments are more often than
what would be detected by pre-test π = 0)

– Rule of thumb F < 10 indicates weak instruments.

The procedure described above works only for a single endogenous variable xt. If the regression has
more than one endogenous (instrumented) regressor, then the analog of the F-test will be the first-stage
matrix and a test for rank of this matrix. See Cragg and Donald (1993) for more details.

Caution! This test for weak IV assumes a homoskedastic setting! What to do in the heteroskedastic
case or when one has autocorrelation is an open question.

(2) The Hahn-Hausman test of the null of strong instruments. The idea is that if instruments are strong
then the regression and the reverse regression should give estimates of β and 1/β, which are consistent
with each other. Think about the “Elasticity of inter-temporal substitution” example from the last
lecture. The test is based on comparing them. Problem: it tests the null of strong identification and
does not control for the probability of a type-II error (mistake of not-detecting weak IV when it is
present). The test may experience power problems as well.

(3) Do not test for weak-strong instruments, but rather use methods robust towards weak instruments.

3. Inference methods robust towards weak instruments

Inferences include tests and confidence sets. We concentrate mainly on tests. Tests robust towards weak
instruments are supposed to maintain the correct size no matter whether instruments are weak or strong.
These can be achieved in two ways: using statistics whose distribution do not depend on µ or using con-
ditioning on sufficient statistics for µ. The problem of robust inferences is fully solved for the case of one
endogenous variable. It is still an open question for the case of more than one endogenous variable.
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3.1 Case of one endogenous variable. 4

3.1 Case of one endogenous variable.

There are two widely known statistics whose distributions do not depend on µ: Anderson-Rubin (AR) and
Lagrange Multiplier (LM).

AR test Consider our model

y = Xβ + u,

X = ZΠ + v,

where X is one-dimensional and test for hypothesis H0 : β = β0. Under the null, vector y −Xβ is equal to
the error ut and is uncorrelated with Z (due to exogeneity of instruments). The suggested statistics is

(y β
AR(β0 =

−X )′P
) Z(y −Xβ)

.
(y −Xβ)′MZ(y −Xβ)/(T − k)

here PZ = Z(Z ′Z)−1Z ′,MZ = I Pz. The distribution of AR does not depend on µ asymptotically
AR→ χ2

−
k/k. The formula may remind you of the J-test for over-identifying restrictions. It would be a J-test

if one were to plugs in β̂TSLS .
In a more general situation of more than one endogenous variable and/or included exogenous regressors

AR statistic is F-statistic testing that all coefficients on Z are zero in the regression of y − β0X on Z and
W . Note, that one tests all coefficients β simultaneously (as a set) in a case of more than one endogenous
regressor.

AR confidence set One can construct a confidence set robust towards weak instruments based on the
AR test by inverting it. That is, by finding all β which are not rejected by the data. In this case, it is the
set :

Conf. set = {β0 : AR(β0) < χ2
k,1−α}.

The nice thing about this procedure is that solving for the confidence set is equivalent to solving a quadratic
inequality. This confidence set can be empty with positive probability (caution!).

LM test The LM test formula can be found in Kleibergen (2002). It has a χ2
1 distribution irrespective of

the strength of the instruments. The problem with this test, though, is that it has non-monotonic power
and tends to produce wider confidence sets than the CLR test described below.

Conditional tests The idea comes from Moreira (2003). He suggested that one consider any test statistic
conditional on a sufficient statistic for µ be called QT . By definition of sufficient statistic, the conditional
(on QT ) distribution of any variable does not depend on µ. So, instead of using fixed critical values, one
would use critical values depending on realization of QT (that is, random) q1−α(QT ). Moreira also showed
that any test that has exact size α for all values of (nuisance) parameter µ is a conditional test. The CLR
(the conditional likelihood ratio test) is a conditional test based on the LR statistic. CLR is preferable since
it possesses some optimality properties.

Confidence sets If one has a robust test, s/he can produce a robust confidence set by inverting the test.
Namely, test all potential hypotheses H0 : β = β0 and consider the set of all β0 for which the hypothesis
is accepted. This set will be a valid confidence set. In general the procedure can be implemented as a grid
testing (testing on a fine enough grid of values of β0). For the homoskedastic case with one endogenous
variable, the inversion of the three tests mentioned above can be done analytically. The CLR test and
confidence set (as well as those for AR and LM) are implemented in Stata (command condivreg). For more
than one endogenous regressor, the numerical complication rises dramatically.

Confidence sets robust to weak identification may be (and often will be) unbounded. Think about why!
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3.2 More than one endogenous regressor 5

3.2 More than one endogenous regressor

Consider the following IV regression:
yt = βxt + γx∗t + ut,

where both xt and x∗t may be endogenous. Assume that one has an k × 1 instrument Zt (k ≥ 2), which
is exogenous. The potential problem is that it may be weakly relevant. That usually means that a 2 × 2
matrix X ′Z(Z ′Z)−1Z ′X (we stack both xt and x∗t in X) has at least one small eigenvalue (but perhaps both
eigenvalues are small).

The problem that has been somewhat solved is what to do if one wants to test a hypothesis of the form
H0 : β = β0, γ = γ0 (that is, a joint hypothesis about both parameters) or he wants to construct a joint
confidence set for (β, γ). There exists a generalization of all three tests (AR, LM, CLR) to such a situation.
For example

(y β
AR( 0x γ0x

∗)′PZ(y β0x γ0x
∗)

β0, γ0) =
− − − −

,
(y − β0x− γ0x∗)′MZ(y − β0x− γ0x∗)/(T − k)

it has a χ2
k asymptotic distribution if hypothesis H0 : β = β0, γ = γ0 is true. By inverting this test one can

obtain a joint confidence set for (β, γ).
The problem is that in applied research we are often interested in separate confidence sets for β and γ,

and tests of the form H0 : β = β0 (γ is a nuisance parameter for such a hypothesis). One way of obtaining
a confidence set for β only is to do a projection. That is,

Conf. set(β) = {β : ∃γ s.t. (β, γ) ∈ joint conf. set}

It is equivalent to using test statistic minγ AR(β0, γ) with the critical values χ2
k. However, this always leads

to conservative inferences. In particular, if the instruments are in fact strong, the confidence set for the
subset of parameters will be wider than the classical (valid in this case) OLS confidence set. There is a
statement, that if γ is strongly identified then

minAR(β0, γ)⇒ χ2
k

γ
−1,

and the limit is substantially smaller than χ2
k. The higher the dimensionality of γ, the higher the potential

loss of power. Kleibergen and Mavroiedis recently showed that if the model is homoskedastic, and γ is
weakly identified then statistic minγ AR(β0, γ) is asymptotically stochastically dominated by χ2

k−1. So,
smaller critical values can be used here as well.

The question of good inferences on a subset of parameters remains open.

4. What about estimation?

This is also a mostly unsolved question. We need something with bias or MSE less than OLS for weak
instruments. Consider k−class estimators:

β̂(k) = [X ′(I − kM 1
Z)X]− X ′(I − kMZ)y

k = 1 corresponds to TSLS, k = kLIML =smallest root of det X⊥
′
X⊥

c
− ′
kX⊥ MZX

⊥ gives LIML. If
k = kLIML − rT K r where = rank(W ), then the estimator is called Fuller.− −

The comparison between the estimators is not that easy: LIML is first order median-unbiased but does
not have finite moments, and thus it can give unexpected high values. β̂LIML = arg minAR(β).

Fuller has some optimality properties for c = 1 and performs well in simulations.

The last word of caution

Weak instruments is an asymptotic problem, or better to say, a problem of non-uniformity of classical GMM
asymptotics. As a result, bootstrap, Edgeworth expansion, and subsampling are not appropriate solutions.
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