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Lecture 9

Bootstrap

The goal oof this lecture is to cover the basics for bootstrap procedures. This lecture is NOT specific to
Time series. For some unexplainable reasons bootstrap is missing in our econometric sequence. I have to
teach you this topic since we’ll be using some bootstrap-based procedures. A good reference is Chapter 52
in Handbook of Econometrics by Horowitz.

Introduction

We have a sample z = {zi, i = 1, ..., n} from a distribution F0. We have a statistic of interest, T (z) whose
distribution we want to know because we want to test a hypothesis or to construct a confidence set based
on this statistic. Let

Gn(t, F0) = P (T (z) ≤ t)

be the cdf of T (z). In general, Gn is some complicated function of F0. If we knew F0 we would be able to
calculate Gn. However, in general F0 is unknown, and this poses the problem.

There are pretty much two ways to get around: asymptotics and simulation techniques. In both cases
we want to approximate Gn.

Asymptotics

One way is to create an asymptotic approximation (in which the dependence on F0 disappears) to the
distribution Gn by letting the sample size n increase to infinity and using CLT and delta-method. If we can
get Gn(t, F0) → G (t) as n → ∞, then we can pretend that Gn(t, F∞ 0) ≈ G (t) and use quantiles of the∞
latter to make inferences.

Example 1. An example of asymptotic approach is as follows:
Let zi be iid with an unknown distribution F0, which has an unknown mean Ezi = µ, and variance

Ez2
i = σ2. Suppose we want to test a hypothesis H0 : µ = µ√ 0 and to construct a confidence set for the mean

by using t-statistic T (z) = n ( 1 ziσ n − µ0). In general T (z) has some complicated distribution depending
on F0. Say, if F0 is Gaussian,̂ then T (z) is Student-t distributed, but in general, it’s not known. If we knew
F0, we can simulate Gn. However,

∑
we know that

T (z)⇒ N(0, 1)

so we can believe that Gn is very close to Φ for large sample size n. This gives us a justification for using
the normal distribution to compute p-values for hypothesis testing and to compute confidence intervals.
For example, let zα be α-quantile of the standard normal distribution (Φ(zα) = α). Then we accept H0 : if
Z ≤ T (z) ≤ Z . And a 95% confidence interval would be [ 1
α/2 1 α/2

∑
zi−σ̂

√
nZ1 α/2,

1
− n − n

∑
zi−σ̂

√
nZ1−α/2].
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Bootstrap

The bootstrap is another approach to approximating Gn(t, F0). Instead of using the asymptotic distribution
to approximate Gn(·, F0), we use Gn(· n

, F F̂0) ≈ Gn(·, n) where F̂n(t) = 1
n i=1 1(x ≤ t) is the empirical cdf.

The reasoning is based on a presumption that Fn is probably very close to F0, and Gn depends on F0 in a
continuous way.

∑
It is usually numerically cumbersome to calculate how Gn depends on F0. In practice, it is much easier

to use simulations to compute Gn(·, F̂n). A general algorithm for the bootstrap with iid data is

1. Generate bootstrap sample zb
∗ = {z1

∗
b, ..., z F̂nb

∗ } independently drawn from n for b = 1..B. By this, we
mean that zib

∗ are drawn independently with replacement from {zi}ni=1.

2. Calculate Tb
∗ = T (zb

∗)

3. GBn (t, F̂n) = 1
B

If B is large, then GBn

∑B
b=1 1(Tb

∗ ≤ t).

(t, F̂ ˆ
n) is very close to Gn(t, Fn) (the simulation accuracy is in our hands). We will let

F̂Zq be the qth quantile of Gn(t, n). In our procedure it is Zq ≈ T([
∗
Bα]), here [·] is a whole part, and T(i) is

i−th order statistics.

Consistency

Theorem 2. Conditions sufficient for bootstrap consistency are:

1. limn Pn[ρ(F0, F̂n) > ε] = 0, ∀ε > 0, where ρ() is some metric (the exact metric depends on the→∞
application)

2. G (τ, F ) is continuous in τ∞

3. ∀τ and Hn s.t. ρ(Hn, F )→ 0, we have Gn(τ,Hn)⇒ G (τ, F )∞

Under these conditions the bootstrap is weakly consistent, i.e. supτ |Gn(τ, Fn)−Gn( →pτ, F0)| 0.

Remark 3. The bootstrap can also be consistent under weaker conditions.

Remark 4. We never said that G (τ, F ) should be normal, but in the majority of applications it is.∞

Asymptotic Refinement

Example 5. Consider the same setup as the previous example. Consider calculating two different statistics
from the bootstrap:

T1(z) =
√
n(z̄(− µ)

T2(z) =
√ z̄
n

− µ
s2(z)

)

The bootstrap analogs of these are

√

T1
∗
,b(z) =

√
n(z̄∗ − ¯)

√
( z

z̄∗ − z̄
T2
∗
,b(z) = n

s2(z∗)

)

We can use these two statistics to compute two different

√
confidence intervals.

Hall’s interval is: [z̄ −Z1 1
1 α/2

√ , z̄ + 1
n

Z1
− α/2

√ ]
n
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t-percentile: [z̄ −Z2
√

s2(z) , z̄ + Z
22 s (z)

1−α/2 n α/2 n ]
where Ziα are quantiles of Ti,b

∗ (z). Which

√
confidence set may be better? The set based on the first statistic

uses that:
T1(z)⇒ N(0, σ2) and T1

∗(z)⇒ N(0, σ2) as n→∞

T2(z)⇒ N(0, 1) and T2
∗(z)⇒ N(0, 1) as n→∞

Definition 6. A statistic is (asymptotically) pivotal if its (asymptotic) distribution does not depend on any
nuisance parameters.

The t-statistic (statistic T2(z) above) is pivotal, T1(z) is not.
The bootstrap usually provides an asymptotic refinement if used for a pivotal statistics. It means that

the approximation by bootstrap is of higher order than the approximation achieved by asymptotic approach.
In our case, under some technical assumptions (moment and Cramer conditions) we have what’s called

Edgeworth expansion:

z̄
P (

− µ√ 1 1 1
n ≤ t) = Φ(t) + h

)
√ 1(t, F0) + h2(t, F0) +O( )

s(z n n n3/2

Edgeworth expansion characterize the closeness of P ( z̄−µs(z)

√
n

1

≤ t) and Φ(t). We see that the difference
between them is of order √ . It is also known that h1(t, F0) is continuous function in t and F0 and depend

n

only on first 3 moments of F0.
There is also Edgeworth expansion for the bootstrapped distribution:

z̄∗
P (

− z̄√ 1 1 1
n ≤ t) = Φ(t) + √ h1(t, F̂ F̂n) + h2(t, n) +O( )

s(z∗) n n n3/2

Taking the difference between these two equations we have:

z̄ µ z̄∗ z̄ 1 1 1
P (

− √
n ) P

−
s( )

≤ t − (
√
n

s(z )
≤ t) =

z ∗ √
(
h1(t, F0) F

n
− h1(t, n̂)

)
+O( ) = O( )

n n

The fact that h F̂1() is uniformly continuous and n − F0 = O(√1 ) tells us that √1
(
h1(t, F0) ˆ− h1(t, Fn) =

n n

O( 1
n ). That is, when we bootstrap a pivotal statistic in our simple example, the accuracy of the approximation

)
is O( 1

n ), whereas the accuracy of the asymptotic approximation is O(√1 ). This gain is accuracy is called
n

asymptotic refinement.
Note that for this argument to work, we needed our statistic to be pivotal because otherwise, the first term

in the Edgeworth expansion would not be the same for the true distribution and the bootstrap distribution.
Consider:

1
P ((z̄ − µ)

√
n ≤ t) =Φ(t/σ) +O(√ )

n

P ((z̄∗ z̄)
√ 1− n ≤ t) =Φ(t/s(z)) +O(√ )

n

The difference is

1
P ((z̄ − µ)

√
n ≤ t)− P ((z̄∗ − z̄)

√
n ≤ t) =Φ(t/σ)− Φ(t/s(z)) +O(√ )

n

1 1 1≈φ(x/σ) (σ
σ2

− s(z)) +O(√ ) = O(
n

√ )
n
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Bias Correction

Another task for which bootstrap is used is bias-correction. Suppose, Ez = µ and we’re interested in a
non-linear function of µ, say θ = g(µ). One approach would be to take an unbiased estimate of µ, say z̄

and plug it into g(), θ̂ = g(z̄). θ̂ is consistent, but it will not be unbiased unless g() is linear. The bias is
Bias = Eθ̂ − g(µ). We can estimate the bias using the bootstrap:

1. Generate bootstrap sample, zb
∗ = {zib∗ }

2. Estimate θb
∗ = g(z̄b

∗)

3. Bias∗ = 1
B

∑B ˆ
b=1 θb

∗ − θ ≈ Bias

4. Use θ̃ = θ̂ − Bias∗ as your estimate

Why it works? Let’s denote
2dg(µ) d g(µ)G1(µ) = and G2(µdµ ) = dµ2 . Then

θ̂
1 1− θ = G1(µ)(z̄ − µ) + G (µ)(z̄ µ)2 + o ( )
2 2 − p

n

Bias = E(θ̂
1 1 σ2 1− θ) = G2(µ)E(z̄ − µ)2 = G (µ) + o( )
2 2 2

n n

similarly
1 s2 1

Bias∗ = G
2 2(z̄) + op( )

n n

As a result,
1

Bias∗ −Bias = op( )
n

Remark 7. This procedure required a consistent estimator to begin with.

Bootstrap do’s and don’ts

• If you have a pivotal statistic, bootstrap can give a refinement. So, if you have choice of statistics,
bootstrap a pivotal one.

• Bootstrap may fix a finite-sample bias, but cannot help if you have inconsistent estimator.

• In general, if something does not work with traditional asymptotics, the bootstrap cannot fix your
problem. For example, if we have an inconsistent estimate, the bootstrap bias correction does not fix
anything.

• Bootstrap could not fix the following problems: weak instruments, parameter on a boundary, unit root,
persistent regressors.

• Bootstrap requires re-centering (the null hypothesis to be true). The next section is about it.

Re-centering

The constraints of our model should also be satisfied in our bootstrap replications of the model. For example,
assume you are doing estimation using GMM for a population moment condition (that is, you are working
under assumption that it is true),

Eh(zi, θ) = 0
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When you are simulating bootstrap replications the analogous condition must hold:

E∗h(zi
∗, θ̂) = 0

which is equivalent to
1

h(zi, θ̂) = 0
n

If the model is overidentified, this condition won’t

∑
hold. To make it hold, we redefine

1
h̃(zi
∗, θ) = h(zi

∗, θ)−
n

∑
h(zi, θ̂)

and use h̃() to compute the bootstrap estimates, θb
∗.

More generally, we need to make sure that our null hypothesis holds in our bootstrap population.

Bootstrap Variants and OLS

Model:

yt = xtβ + et

we estimate it by OLS and get β̂ and êt. Now we generate bootstrapped samples such that

yt
∗ = x∗ ˆ

tβ + e∗t

There are at least three ways to do sampling :

• Take zi = {(xi, êi} (xi is always drawn with êi). This approach preserves any dependence there might
be between x and e. For example, if we have heteroskedasticity.

• If xt is independent of et, we can sample them independently. Draw x∗t from {xt} and independently
draw e∗t from {êt}. This is likely to be more accurate than the first approach when we really have
independence.

• Parametric bootstrap: Draw x∗t from {xt}, and independently draw e∗t from N(0, σ̂2)

Remark 8. In time series, all of these approaches might be inappropriate. If {xt, et} is auto-correlated, then
these approaches would not preserve the time dependence among errors. One way to proceed is to use the
block bootstrap, i.e. sample contiguous blocks of {xt, et} together.
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