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GMM Estimation of the NKPC 

� 

� 

One popular use of GMM in applied macro has been estimating the Neo-Keynesian Phillips Curve. An 
important example is Gaĺı and Gertler (1999). This is an interesting paper because it involves a good amount 
of macroeconomics, validated a model that many macroeconomists like, and (best of all for econometricians) 
has become a leading example of weak identification in GMM. These notes describe Gaĺı and Gertler’s 
paper, then give a quick overview of identification robust inference in GMM, and finally describe the results 
of identification robust procedures for Gaĺı and Gertler’s models. 

Deriving the NKPC 
You should have seen this in macro, so I’m going to go through it quickly. Suppose there is a continuum of 
identical firms that sell differentiated products to a representative consumer with Dixit-Stiglitz preferences 
over the goods. Prices are sticky in the sense of Calvo (1983). More specifically, each period each firm has 
a probability of 1 − θ of being able to adjust its price each period. If p∗ is the log price chosen by firms that t 
adjust at time t, then the evolution of the log price level will be 

pt = θpt−1 + (1 − θ)p∗ (1)t 

The first order condition (or maybe a first order approx to the first order condition) for firms that get to 
adjust their price at time t is 

∞
n p∗ =(1 − βθ) (βθ)kEt[mc + µ] (2)t t+k 

k=0 

nwhere mct is log nominal marginal cost at time t, and µ is a markup parameter that depends on consumer 
preferences. This first order condition can be rewritten as: 

∞
n n p∗ 

t =(1 − βθ)mct + (1 − βθ) (βθ)kEt[mct+k + µ] 
k=1 

=(1 − βθ)(µ + mc n) + (1 − βθ)βθEtp
∗ 

t t+1 

pt−θpt−1Substituing in p∗ 
t = 1−θ gives: 

npt − θpt−1 =
1 − βθ 

Et[pt+1 − θpt] + (1 − βθ)(µ + mc )
1 − θ 1 − θ t 

(1 − θ)(1 − θβ) 
pt − pt−1 =βEt[pt+1 − pt] + 

θ 
(µ + mct

n − pt) 

πt =βEt[πt+1] + λ(µ + mc nt − pt) (3) 
(4) 

This is the NKPC. Inflation depends on expected inflation and real marginal costs (or the deviation of log 
marginal costs from the steady state. In the steady state µ − p = mc.). 
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Estimation 
Using the Output Gap Since real marginal costs are difficult to observe, people have noted that in a 

�

model without capital, mcn
t − pt ≈ κxt where xt is the output gap (the difference between current output 

and output in a model without price frictions). This suggests estimating: 

βπt = πt−1 − λκxt − λµ + �t 

When estimating this equation, people general find that −λκ is positive, contradicting the model. 

GG Gaĺı and Gertler (1999) argued that there at least two problems with this model: (i) the output gap 
is hard to measure and (ii) the output gap may not be proportional to real marginal costs. Gaĺı and Gertler 
argue that the labor income share is a better proxy for real marginal costs. With a Cobb-Douglas production 
function, 

LαlYt = AtKt
αk 

t 

marginal cost is the ratio of the wage to the marginal product of labor, 

Wt WtLt
MCt = = 

Pt(∂Yt/∂Y ) PtαlYt 
1 

= SLt
αl 

Thus the deviation of log marginal cost from its steady state should equal the deviation of log labor share 
from its steady state, mct = st. This leads to moment conditions: 

Et[(πt − λst − βπt+1)zt] = 0 (5) 
Et[(θπt − (1 − θ)(1 − βθ)st − θβπt+1)zt] = 0 (6) 

where zt are any variables in firms’ information sets at time t. As instruments, Gaĺı and Gertler use four 
lags of inflation, the labor income share, the output gap, the long-short interest rate spread, wage inflation, 
and commodity price inflation. Gaĺı and Gertler estimate this model and find values of β around 0.95, θ 
around 0.85, and λ around 0.05. In particular, λ > 0 in accordance with the theory unlike when using the 
output gap. The estimates of θ are a bit high. They imply an average price duration of five to six quarters, 
which is much higher than observed in the micro-data of Bils and Klenow (200?). 

Hybrid Philips Curve 
The NKPC implies that price setting behavior is purely forward looking. All inflation inertia comes from 
price stickiness in this model. One might be concerned whether this is enough to capture the observed 
dynamics of inflation. To answer this question, Gaĺı and Gertler consider a more general model that allows 
for backward looking behavior. In particular, they assume that a fraction, ω of firms set prices equal to 
the optimal price last period plus an inflation adjustment: pb

t = p∗ 
t−1 + πt−1. The rest of the firms behave 

optimally. This leads to the following inflation equation: 

πt =
(1 − ω)(1 − θ)(1 − βθ)mct + βθEtπt+1 + ωπt−1 (7)

θ + ω(1 − θ(1 − β)) 
=λmct + γf Etπt+1 + γbπt−1 

As above, Gaĺı and Gertler estimate this equation using GMM. The find ω̂ ≈ 0.25 with a standard error 
of 0.03, so a purely forward looking model is rejected. Their estimates of θ and β are roughly the same as 
above. 
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Identification Issues 
Gaĺı and Gertler note that they can write their moment condition in many ways, for example the HNKPC 
could be estimated from either of the following moment conditions: 

�� � � 

� 

Et [((θ + ω(1 − θ(1 − β)))πt − (1 − ω)(1 − θ)(1 − βθ)st − βθπt+1 − ωπt−1) zt] =0 (8) 

Et πt − 
(1 − ω)(1 − θ)(1 − βθ) 

st − 
βθ 

πt+1 − 
ω

πt−1 zt =0 (9)
θ + ω(1 − θ(1 − β)) θ + ω(1 − θ(1 − β)) θ + ω(1 − θ(1 − β))

Estimation based on these two moment conditions gives surprisingly different results. In particular, (8) leads 
to an estimate of ω of 0.265 with a standard error of 0.031, but (9) leads to an estimate of 0.486 with a 
standard error of 0.040. If the model is correctly specified and well-identified, the two equations should, 
asymptotically, give the same estimates. The fact that the estimates differ suggests that either the model is 
misspecified or not well identified. 

Analyzing Identification 

There’s an old literature about analyzing identification conditions in rational expectations models. Pesaran 
(1987) is the classic paper that everyone seems to cite, but I have not read it. Anyway, the idea is to solve 
the rational expectations model (7) to write it as an autoregression, write down a model for st to complete 
the system, and then analyze identification using familar SVAR or simultaneous equation tools. I will follow 
Mavroeidis (2005). Another paper that does this is Nason and Smith (2002). Solving (7) and writing an 
equation for st gives a system like: 

πt =D(L)πt−1 + A(L)st + �t (10) 
st =ρ(L)st−1 + φ(L)πt−1 + vt (11) 

D(L) and A(L) are of order the maximum of 1 and the order of ρ(L) and φ(L) respectively. An order 
conditions for identification is that the order of ρ(L) plus φ(L) is at least two, so that you have at least 
two valid instruments to instrument for st and πt+1 in (7). This condition can be tested by estimating (11) 
and testing whether the coefficients are 0. Mavroeidis does this and finds a p-value greater than 30%, so 
non-identification is not rejected. Mavroeidis then picks a wide range of plausible values for the parameters 
in the model and calculates the concentration parameter for these parameters. He finds that concentration 
parameter is often very close to zero. Recall from 382 that in IV, a low concentration parameter indicates 
weak instrument problems. 

Weak Identification in GMM 

As with IV, when a GMM model is weakly identified, the usual asymptotic approximations work poorly. 
Fortunately, there are alternative inference procedures that perform better. 

GMM Bias 1 The primary approaches are based on the CUE (continuously updating estimator) version 
of GMM. To understand why, it is useful to write down the approximate finite sample bias of GMM. If our 
moment conditions are g(β) = gi(β)/T and Ω(β) = E[gi(β)gi(β)�] (in the iid case, for time series replace 
with an appropriate auto-correlation consistent type estimator) CUE minimizes: 

β̂ = arg min g(β)�Ω(β)−1 g(β) 

That is, rather than plugging in a preliminary estimate of β to find the weighting matrix, CUE continuously 
updates the weighting matrix as a function of β. Suppose we used a fixed weighting matrix, A and do GMM. 

1This section is based on Whitney’s notes from 386. 
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What is the expectation of the objective function? Well, for iid data (if observations are correlated, we will 
get an even worse bias) we have: ⎡ ⎤ 

E [g(β)�Ag(β)] =E ⎣ gi(β)�Agj (β)/T 2⎦ 
i,j 

= E[g(β)]AE[g(β)]/T 2 + E[gi(β)�Agi(β)]/n2 

i=j i 

=(1 − T −1)E[g(β)]AE[g(β)] + tr(AΩ(β))T −1 

The first term is the population objective function, so it is minimized at β0. The second term, however, 
is not generally minized at β0, causing E[β̂T ] =� β. However, if we use A = Ω(β)−1, then the second term 
vanishes and we have an unbiased estimator. This is sort of what CUE does. It is not exactly since we use
Ω̂(β) instead of Ω(β). Nonetheless, it can be shown to be less biased than two-step GMM. See Newey and 
Smith (2004). 

Another view of the bias can be obtained by comparing the first order conditions of CUE and two-step 
GMM. The first order condition for GMM is 

0 = G(β)ˆ β)−1 (12)Ω(˜ g(β) 

∂g ∂giwhere G(β) = ∂β = 
� 

∂β and β̃ is the first step estimate of β. This term will have bias because the ith 
ˆobservation in the sum used for G, Ω, and g will be correlated. Compare this to the first order condition for 

CUE: 

0 =G(β)Ω(ˆ β)−1 Ω(β)−1 
� ∂gi ∂gi 

�
/T Ω(β)−1 g(β)g(β) − g(β)ˆ

∂β 
gi(β)� + gi(β) 

∂β 
ˆ

� ∂gi ˆ ˆ= G(β) − 
∂β 

gi(β)� Ω(β)−1 Ω(β)−1 g(β) 

The term in brackets is the projection of G(β) onto the space orthogonal to g(β). Hence, the term in brackets 
is uncorrelated with g(β). This reduces bias.2 

Identification Robust Inference The lower bias of CUE suggests that inference based on CUE might 
be more robust to small sample issues than traditional GMM inference. This is indeed the case. Stock and 
Wright (2000) showed that under H0 : β = β0 the CUE objective function converges to a χ2 where m is the m 
number of moment conditions. Moreover, this convergence occurs whether the model is strongly, weakly3, or 
non-identified. Some authors call the CUE objective function the S-statistic. Others call it the AR-statistic 
because in linear models, the AR statistic is the same as the CUE objective function. The S-stat has the 
same properties as the AR-stat discussed in 382. Importantly, its degrees of freedom grows with the number 
of moments, so it may have lower power in very over identified models. Also, an S-stat test may reject either 
because β =� β0 or because the model is misspecified. This can lead to empty confidence sets. 

The Kleibergen (2005) developed an analog of the Lagrange Multiplier that, like the S-stat, has the 
same limiting distribution regradless of identification. The LM stat is based on the fact that under H0 : 
β = β0, the derivative of the objective function at β should be approximately zero. Kleibergen applies this 
principal to the CUE objective function. Let D̂(β) = G(β) − � Ω(β)−1 (as above for iid data, acov (G(β), g(β)) ˆ� ∂β gi(β)�). Kleibergen’s statistic is acov (G(β), g(β)) = ∂gi 

KLM = g(β)Ω(̂β)
−1 

D̂(β)(D̂(β)�Ω(̂β)
−1 

D̂(β))−1D̂(β)�Ω(̂β)
−1 

g(β) d 
χ2 (13)→ p 

2There is still some bias due to parts of Ω̂ being correlated with g and G. 
3Defining weak GMM asymptotics involves introducing a bunch of notation, so I’m not going to go through it. The idea is 

essentially the same as in linear models. See Stock and Wright (2000) for details. 
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Figure 1: Kleibergen and Mavroeidis Power Curve 

It is asymptotically χ2 with p =(number of parameters) degrees of freedom. The degrees of freedom of 
KLM does not depend on the degree of overidentification. This can give it better power properties than the 
AR/S stat. However, since it only depends on the first order condition, in addition to being minimized at 
the minimum of the CUE objective function, it will also be minimized at local minima and maxima and 
inflection points. This property leads Kleibergen to consider an identification robust version of the Hansen’s 
J-statistic for testing overidentifying restriction. Kleibergen’s J is 

J(β) = S(β) − KLM(β) d 
χ2 (14)→ m−p 

Moreover, J is asymptotically independent of KLM , so you can test using both of them, yielding a joint 
test with size α = αJ + αK − αJ αK . 

If you have a great memory, you might also remember Moreira’s conditional likelihood ratio test from 
covering weak instruments in 382. There’s also a GMM version of this test discussed in Kleibergen (2005). 

Results of Weak Identification Robust Inference for HNKPC 

Kleibergen and Mavroeidis Kleibergen and Mavroeidis (2008) extend Kleibergen’s tests described 
above, which only work for testing a the full set of parameters, to tests for subsets of parameters. As 
an application, Kleibergen and Mavroeidis (2008) simulate a HNKPC model and consider testing whether 
the faction of backward looking firms (which they call α, but GG and I call ω) equals one half. Figure 1 
shows the frequency of rejection for various true values of α. The Wald test badly overrejects when the true 
α is 1/2. The KLM and JKLM have the correct size under H0, but they also have no power against any of 
the alternatives. It looks like identification is a serious issue. 

Dufour, Khalaf, and Kichian (2006 Use the AR and K statistics to construct confidence sets for Gaĺı 
and Gertler’s model. Figure 2 shows the results. The confidence sets are reasonably informative. The point 
estimates imply an average price duration of 2.75 quarters, which is much closer to the micro-data evidence 
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Figure 2: Dufour, Khalaf, and Kichian Confidence Sets 

(Bils and Klenow’s average is 1.8 quarters) than Gaĺı and Gertler’s estimater. Also, although not clear from 
this figure, Dufour, Khalaf, and Kichian find that Gaĺı and Gertler’s point estimates lie outside their 95% 
confidence sets. 

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
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